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PREFACE TO THE FOURTH EDITIQN

This fourth edition contains several additions. The main ones con-
cern three closely related topics: Brownian motion, functional limit.
distributions, and random walks. Besides the power-and ingenuity of
their methods and the depth and beauty of their results, their importance
is fast growing in Analysis as well as in theoretical and applied Proba-
bility.

- These additions increased the book to an unwieldy size and it had to
be split into two volumes. '

About half of the first volume is devoted to an elementary introduc-
tion, then to mathematical foundations and basic probability concepts
and tools. The second half is devoted to a detailed study of Independ-
ence which played and continues to play a central role both by itself and
as a catalyst.

The main additions consist of a section on convergence of probabilities
on metric spaces and a chapter whose first section on domains of attrac-
tion completes the study of the Central limit problem, while the second
one is devoted to random walks.

About a third of the second volume is devoted to condmonmg and
properties of sequences of various types of dependence. The other two
thirds are devoted to random functions; the last Part on Elements of
~ random analysis is more sophisticated.

The main addition consists of a chapter on Brownian motion and limit
distributions.

It is strongly recommended that the reader begin with less involved
portions. In particular, the starred ones ought to be left out until they -
are needed or unless the reader is especially interested in them.

I take this opportunity to thank Mrs. Rubalcava for her beautiful
- typing of all the editions since the inception of the book. I also wish to

thank the editors of Springer-Verlag, New York, for their patience and
care. ,
M. L.
January, 1977
Berkeley, California



PREFACE TO THE THIRD EDITION

This book is intended as a text for graduate students and as a reference
for workers in Probability and Statistics” The prerequisite is honest
calculus. The material covered in Parts Two to Five inclusive requires |
about three to four semesters of graduate study. The introductory part
may serve as a text for an undergraduate course in elementary prob-,
ability theory. .

The Foundations are presented in:

the Introductory Part on the background of the concepts and prob-
lems, treated without advanced mathematical tools;

Part One on the Notions of Measure Theory that every probabilist
and statistician requires;

Part Two on General Concepts and Tools of Probability Theory

Random sequences whose general propertles are given in the Founda-
tions are studled in:

Part Three on Independence devoted essentially to sums of inde-
pendent random variables and their limit properties;

Part Four on Dependence devoted to'the operation of conditioning
and limit properties of sums of dependent random variables. The
last section introduces random functions of second order.

Random functions and processes are discussed in:

‘Part Five on Elements of random analysis devoted to the basic con-.
cepts of random analysis and to the martingale, decomposable,
and Markov types of random functions.

Since the primary purpose of the book is didactic, methods are
emphasized and the book is subdivided into: :

unstarred portions, independent of the remainder; starred portions,
which are more involved or more abstract;

complements and details, including illustrations and applications of
the material in the text, which consist of propositions with fre-



PREFACE TO THE THIRD EDITION

quent hints; most of these propositions can be found in the
articles and books referred to in the Bibliography.

Also, for teaching and reference purposes, it has proved useful to name -
most of the results.

“Numerous historical remarks about results, methods, and the evolu-
tion of various fields are an intrinsic part of the text. The purpose is
purely didactic: to attract attention to the basic contributions while
introducing the ideas explored. Books and memoirs of authors whose
contributions are referred to and discussed are cited in the Bibliography,
which parallels the text in that it is organized by parts and, within parts,
by chapters. Thus the interested student can pursue his study in the -
original literature.

This work owes much to the reactions of the students on whom it has
been tried year after year. However, the book is definitely more concise
than the lectures, and the reader will have to be armed permanently
with patience, .pen, and calculus. Besides, in mathematics, as in any
form of poetry, the reader has to be"a poet iz posse.

This third edition differs from the second (1960) in-a number of .
places Modifications vary all the way from a prefix (“sub” martingale
in lieu of “semi”-martingale) to an entire subsection (§36.2). To pre-
serve pagination, some additions to the text proper (especially 9, p. 656)
had to be put in the Complements and Details. It is hoped that more-
over most of the errors have been eliminated and that readers will be
‘’kind enough to inform the author of those which remain.

I take this opportunity to thank those whose comments and criticisms
led to corrections and improvements: for the first edition, E. Barankin, S.
Bochner, E. Parzen, and H. Robbins; for the seccond edition, Y. S. Chow,
R. Cogburn, J. L. Doob, J. Feldman, B. Jamison, J. Karush, P. A. Meyer,
J. W. Pratt, B. A. Sevastianov, J. W. Woll; for the third edition, S.
Dharmadhikari, J. Fabius, D. Freedman, A. Maitra, U. V. Prokhorov.
My warm thanks go to Cogburn, whose constant help throughout the
preparation of the second edition has been invaluable. This edition has
been prepared with the partial support of the Office of Naval Research:
and of the National Science Foundation.

‘ M. L.
April, 1962
" Berkeley, California
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Part Four

DEPENDENCE

For about two centuries probability theory has been concerned almost
exclusively with independence. Yet, very particular forms of depend-
ence appear already in the theory of games of chance. But a first
gcneral type of dependence—chains—was introduced only at the be-
ginning of this century by Markov. Another type of dependencr—
stationarity—appears in ergodic theory, and a related type-*—aemnd
order stationarity—is then introduced in probability theory by
Khintchine (1932). Centering at conditional expectations by P. Lévy.
(1935) gives rise to a new type of dependence—martingales.

At the very core of the study of dependence lies the eouoept of con-
ditioning—with respect to a function—put in an abstract and hgorous
form by Kolmogorov. In this part, the concept of conditioning is in-
troduced in a more general form—with respect to a o-field~—and, as
much as possible, the properties of various types of dependence are re-
lated to more general results, with emphasis given to the methods.






Chapter VI1II

CONDITIONING

§27. CONCEPT OF CONDITIONING

The concept of “conditioning” can be expressed in terms of sub
o-fields of events. Conditional probabilities of events and conditional
expectations of r.v.’s “given a o-field ®,” to be introduced and investi-
gated in this chapter, are ®-measurable functions defined up to an
equivalence. If ® is determined by a countable partition of the sure
event, then these functions are elementary. In this “elementary case,”
a constructive approach with a definite intuitive appeal is possible and
there are no technical difficulties. In the general case, there is no suit-
able and rigorous constructive approach, and a descriptive one, requiring
more powerful tools, especially the Radon-Nikodym theorem, has to be
used. '

The R.-N. theorem was obtained in its abstract form in 1930 and the
concept of conditional probabilities and of conditional expectations of
integrable r.v.’s “given” a measurable function, finite or not, numerical
or not, was then put on a rigorous basis by Kolmogorov in 1933.

27.1. Elementary case. Investigation of the elementary case will give
us an insight into the ideas involved in the intuitive notion of condi-
tioning and will lead “naturally” to the notions and problems which
appear in the general case.

The notien of conditional probability of an event 4 “given an event
B” corresponds to that of frequencies of A in the repeated trials where
B occurs; it is one of the oldest probability notions. For every event

A, the relatign
PB-PgAd = PAB

defines the conditional probability (c.pr.) Ppd of A giv?n B as the ratio
PAB/PB, provided B is a nonnull event; if B is null, so is 4B, and the
3



4 CONDITIONING . [Sec. 27)

foregoing relation leaves PpA undetermined. In what follows, we
assume that, unless otherwise stated, B is. nonnull.

The function Pg on the o-field @ of events, whose values are PpA,
A € @, is called canditional pr. given B. The deﬁning relation shows
at once that since P on @ is normed nonnegatwe, and c-additife, so
is Pg on Q:

PgQ =1, PBQO PBZA, EPBJ,

Thus, the conditioning expressed by “given .B” means that the initial
pr. space (2, @, P) is replaced by the pr. space (?, @, Pg). The expec-
tation, if it exists, of a r.v. X on this new pr. space is called conditional
expectation (c.exp.) given B and is denoted by EgX; in symbols

EsX = f X dPs.

Since Pg.= O on {AB°, A € G}, the right-hand side reduces to f X dPp

and, since Pp = ;’EP on {AB, A€ @}, it becomes —fXdP
Therefore, the c.exp. of X given B can be defined directly by

PBEgX = f XdP
B
and is determined if B is a nonnull event. In particular,
PBEaly = [14dP = P4B
B .

so that the c.pr. PgA can be defined, thereafter, by
PpA = Egl,.

Thus, if Ep is the c.exp. given B, with values EgX on the family &p of
all r.v.’s X whose integral on B exists, the c.pr. Pg becomes the re-
striction of Ep to the family I, of jndicators of events. Furthermore,

properties of P become particular cases of the immediate properties
of Ep below.

If X2 0 then EgX 2 0, and if ¢ is a constant then Egc = ¢. If the
X are nonnegative, or if the X; are integrable and their consecutive sums
are uniformly bounded by an integrable r.v., then Ep 3° X; = 3. EpX;.

C.exp.’s (hence c.pr.’s) acquire their full meaning when reinterpreted
as values of functions, as follows. The number EX is no longer assigned
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to B but to every point of B, and similarly for Ep.X, so that we have a
two-valued function on @, with values EgX for w € B and EpX for
w € B°. More generally, let {B;} be a countable partition of @ and
let ® be the minimal o-field over this partition. Let & be the family of
all r.v.’s X whose expeéution EX exists, so that their indefinite inte-
grals, hence c.exp.’s given any nonnull event, ex:st Consider the ele- -
mentary functions ‘

EGX Z (EWX)IB” X C 8

If some B; are null then the corresponding values Eg X 'are undeter- ‘
mined, so that EQX is undetermined on the null event which is the sum
of null B;. Such a possibility, together with the definition of EB,X
leads to the following

CONSTRUCTIVE DEFINITION. The elementary function E®X defined
up to an equivalence by :

1 X ( ! fXdP)I‘ Xce
(1) -Z ﬁ - Bj ! »
is the c.exp. ofngm(B

Upon particularizing to mdlcators, the ®-measurable functxon P"d g

defined up to an equivalence by setting
P4 = E®I,, A€,

“will be the c.pr. of A given ®; the contraction of E® on I, to be denoted
by P® will be the c.pr. given ®, and its values are the (B-mcasurablc
functions P*4; 4 € @, defined up to ah equwalcncc

We say “‘given (the o-field) ®” and not ngen (the partition) {B;},”
because E®X determines the c.exp. of X given an arbitrary nonnull
event B € ®. In fact, if 3’ denotes the summation over some sub-
class of {B;}, then every event B € ® is of the form ¥’ Bj, and we
have

PBE;X = f XdP = £ [, X 4P = T PBESX.
This relation can also be written as follows If Pg is the restriction of
P to ®, defined by
P.gB =PB, B€E ®,
then the right-hand side becomes f (E®X) dPg while the left-hand side

is fX dP. This leads to the following



