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BEEEEH  Introduction to genetic mouse models of neurobehavioral disorders

Introduction

Animal modeling is an interactive process in which one or more
species (the “models”) are studied to gain insight on a trait or
disorder in humans including the testing of (new) hypotheses
and (pharmaco)therapies. Roughly speaking, a model’s useful-
ness depends on the strength of its validity, which has three
components: face, predictive, and construct validity. These, in
turn, depend on the information we have about the trait or
disorder. Thus, the more we know about the cause(s), genetic
and/or environmental, and the exact pathophysiology of a dis-
order, the better we are able to model certain aspects of that
disorder. In recent decades, mice have replaced rats to become
the animal model of choice for behavioral neuroscientists. The
most important reason for this has been the rapid advances in
genetic engineering over the last two decades, to the extent that
there is now a wealth of distinct mouse techniques available to
mimic (or test hypotheses on) the pathophysiology of a disor-
der. In addition, both the mouse brain and genome are similar
to those of humans.

Psychiatric disorders are among the most fascinating human
diseases as they touch directly on that which makes us human:
our minds. Whereas, say, a heart patient may be sick and suf-
fering, cardiac disease touches the mind only indirectly (by
the stress it generates, for example) and the afflicted patient
remains recognizably the same person. Not so with many psy-
chiatric disorders, which not only can be life-long debilitat-
ing diseases, but directly affect and in some cases dramatically
change a patient’s mind. Modeling a disordered mind and its
consequent behavior, however, can be very challenging, because
it is difficult to develop animal tests that convincingly and con-
sistently mimic human symptoms. In addition, for most psy-
chiatric disorders we lack objective and reliable information
about their etiology. Psychiatric diagnoses are, to a great extent,
subjective and based on the presence of a minimal number
of symptoms from a list of symptoms during a certain period
of time (DSM-5, 2013). For instance, a diagnosis of depres-
sion, or major depressive disorder in DSM terms is based on
the presence of five symptoms out of a list of nine (DSM-5,
2013), which means that theoretically two persons with the
same diagnosis may share only one symptom. This heterogene-
ity is corroborated even further by the fact that the diagnostic

Genetic mouse models of neuropsychiatric disorders

Frans Sluyter, Susanna Pietropaolo, and Wim E. Crusio

criteria for depression are partly shared with anxiety disorders
and that one single episode of mania changes the diagnosis to
bipolar disorder, which is presumably a distinct pathophysio-
logical entity (Krishnan and Nestler, 2008). It is therefore not
surprising that the search for genes (or DNA markers) under-
lying (or reliably associated with) depression has been largely
disappointing as opposed to, for example, the recently pub-
lished list of genetic markers for hormonally mediated cancers,
for which objective and reliable biomarkers exist. (See Sakoda
et al., 2013 for a commentary on the dozen high-impact papers
reporting over 70 new susceptibility loci for breast, ovarian, and
prostate cancers.) In addition to the lack of objective biolog-
ical markers and variation in symptoms, the impossibility of
modeling typically human symptoms such as guilt and suicidal
ideation raises another barrier in modeling depression. Conse-
quently, most models of depression, including genetic mouse
models, basically test hypotheses about the disorder (e.g., by
changing the underlying genetics of a neurobiological pathway
known to be involved in a subset of affected individuals, see also
Chapter 22 for a critical assessment of mouse models for depres-
sion).

There are exceptions, though. The genetic causes of neu-
rodevelopmental disorders such as Fragile X or Rett syndrome
are known and these disorders can be reliably modeled using
genetically engineered mice, i.e., Fmrl and Mecp2 knockout
(KO) mice, respectively. These models have high construct
validity as they capture the essence of Fragile X and Rett syn-
drome and can be studied invasively - an (ethical) impossibil-
ity in humans - to learn about the pathophysiology underly-
ing these disorders and to search for suitable treatments. For
instance, brain Rho GTPases have been identified as an inno-
vative therapeutic target in Mecp2 knockouts and the adminis-
tration of cytotoxic necrotizing factor 1 (CNF1, which activates
Rho GTPases) has been shown to markedly improve Rett symp-
tomatology in these mice (see Chapter 13). Similarly, Fmr1-KO
mice have been employed to design pharmacological and non-
pharmacological therapeutic approaches, some already leading
to clinical trials (see Chapter 14).

Genetic mouse models are also helpful in modeling the
effects of rare genetic variants. An excellent example hereof is

Behavioral Genetics of the Mouse: Volume 11. Genetic Mouse Models of Neurobehavioral Disorders, eds. S. Pietropaolo, F. Sluyter, and W. E. Crusio.
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Section 1: Introduction to genetic mouse models of neurobehavioral disorders J

the study of Bevilacqua et al. (2010), who discovered an associ-
ation between impulsivity and the gene coding for the 5-HT2B
receptor (HTR2B) in a Finnish subpopulation. Violent offend-
ers whose crimes were characterized by a high degree of impul-
sivity were statistically more likely to lack functional 5-HT2B
receptors as a result of a mutated HTR2B gene. Bevilacqua et al.
(2010) subsequently generated Htr2b knockout mice and tested
these animals for five separate measures of impulsivity and nov-
elty seeking. They found that knockouts were more active in
a novel environment, displayed an increased number of con-
tacts with a novel object, and were less likely to wait for a larger
but later reward, a behavioral profile similar to the genetically
affected violent offenders.

In fact, some think that the effects of individual muta-
tions on the pathogenesis of psychiatric disorders may be more
important than hitherto thought. Thus, based on recent findings
from whole-exome and whole-genome sequencing, Mitchell
et al. (2011) postulate that psychiatric disorders are actually
umbrella terms for large numbers of distinct genetic disorders
that happen to result in similar spectra of symptoms. They fur-
ther propose to capture these (de novo) mutations (which may
also include duplications and translocations) in mouse models
with direct construct validity, i.e., where the genetic manipula-
tion results in a defect homologous to the actual cause of the
condition in humans. These “direct” animal models of genetic
etiology can then be further analyzed using the full arsenal of
modern behavioral neuroscience. Insel (2007) calls these types
of animal models “model animals,” making a careful distinction
between models that phenotypically resemble aspects of mental
disorders (old-fashioned animal models) and models with the
molecular and cellular abnormalities found in mental disorders
(model organisms).

However, the prevailing opinion regarding the pathogene-
sis of neurobehavioral disorders is still the polygenic/threshold
model in which what is inherited is not so much a disorder as
a liability to a disorder contributed to by multiple genetic and
environmental effects. Each of these, by themselves, would only
have a small effect on risk, but when the collective burden of
such alleles passes a putative threshold, the system would be
pushed into a pathogenic state. The polygenic/threshold model
is more about probability as opposed to the mutation model,
which is more about causality. Moreover, and perhaps more
importantly from an animal modeling point of view, the rel-
atively small contribution of each effect makes it difficult to
find genetic disease variants and construct appropriate models.
The result is that for most neurobehavioral disorders, precise
genetic information is either lacking or not very reliable. Con-
sequently, in this framework genetic models are either specula-
tive or only capture a small part of the underlying etiology. As
for the speculative side of genetic modeling, Nestler and Hyman
(2010) call this “reversing the direction of validation,” in which
observed pathology in genetic (mouse) models may be sought
in human patients, either in postmortem tissue or non-invasive
imaging.

Ideally, genetic mouse modeling is a two-way street where
human (liabilities to) pathologies, either on a genetic or on a
neuro-circuitry level, are mirrored in model animals, which, in
turn, inform and steer human studies. As long as we are clear
and honest about what we (attempt to) model and as long as
we keep the limitations of modeling in mind, genetically engi-
neered mice can be very effective in elucidating the pathophys-
iology of neurobehavioral disorders and ultimately in finding
successful (pharmaco)therapies. Last but not least, although the
vast majority of genetic mouse models presented in this vol-
ume are the result of active gene (or chromosome) engineering,
we should not forget about the traditional genetic mouse mod-
els, i.e., artificial selection lines and inbred strains, which still
have added value in understanding and modeling neurobehav-
ioral disorders. An outstanding illustration hereof is the work
of Phillips et al. (Chapter 27) who used a variety of short-term
bidirectionally selected lines to gain insight into the neurobiol-
ogy of amphetamine addiction.

Although this book presents quite a few success stories
where genetic mouse models have been very effective in elu-
cidating disease mechanisms, it would not be fair to skip the
equally numerous failures. For example, sometimes a muta-
tion with a dramatic effect in humans has much more mod-
erate effects in mice. An example of this is the Fmrl KO
mouse (Chapter 14). Although this animal has the same molec-
ular defect as human patients with Fragile X syndrome (i.e.,
no fragile X mental retardation protein (FMRP) expression)
and does display many of the same symptoms that human
patients show, the severity of the disorder is much reduced in
mice.

Another problem is the rather frequent failure to replicate
findings obtained in different laboratories. Ever since the land-
mark study by Crabbe et al. (1999), this is often brushed away
as being unavoidable variation due to interlaboratory differ-
ences. This is not the complete truth for several reasons. First
of all, it is often overlooked that the Crabbe et al. study actu-
ally showed that many behavioral differences can be reliably
reproduced in different laboratories and this often over decades
(Wahlsten et al., 2006). Second, and in our opinion even more
seriously, we feel that many failures to replicate are due to con-
ceptual inadequacies in our arsenal of behavioral tests. Many
tests have never been properly studied and validated. For many
other tests, validation has been only cursory, testing just two
groups of animals, one of them treated with some pharmaco-
logically active substance of supposedly known effect and the
other the controls. It is becoming increasingly clear that tests
that purportedly measure the same behavioral quality often give
divergent results even in the same lab and in the hands of the
same experimenters. An example is the study of Mineur et al.
(2006), who tested animals from different inbred strains in
both the Porsolt forced swim test and the tail suspension test.
Although both tests are supposed to measure the very same
behavioral construct, namely depression-like behavior (“behav-
ioral despair”), the results of both tests were dramatically
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different. Thus, it would appear that the refinement and finesse
of our current behavioral tools do not match those of our
genetic tools. Improving our understanding of our behavioral
methods will therefore be an important challenge in the near
future for neuroscience, and neurogenetics in particular.

We would like to finish this introduction on a more
optimistic note, however. The past two decades have shown
the power of the “new genetics” (now also including more
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When is a model a good model?
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Animal models in neurobehavioral research

To make sense of a discussion of animal models, one first has to understand
both the purpose of such models, and their benefits to research, as well as the
limitations on their interpretation.

(McMillen, 1997: 409)

In line with the above statement, a model is a good model when
it serves its purpose (Geyer and Markou, 1995) and advances
scientific insight. This prompts a number of questions: What is
amodel? What is the purpose of a model? How is a model devel-
oped and validated? How can we evaluate a model, i.e., decide
whether this is indeed a good model? We will try to address
these questions, with emphasis on model evaluation.

We define animal models in the behavioral neurosciences,
which include models of neurobehavioral disorders, as follows:

An animal model with biological and/or clinical relevance in the behavioral
neurosciences is a living organism used to study brain-behavior relations under
controlled conditions, with the final goal to gain insight into, and to enable pre-
dictions about, these relations in humans and/or a species other than the one
studied, or in the same species under conditions different from those under
which the study was performed.

(van der Staay, 2006: 133-134)

Purpose of animal models

Animal models are developed for a specific purpose (Festing,
2004; Holmes, 2003; Massoud et al., 1998). For example, ani-
mal models of neurobehavioral disorders are used to enhance
our understanding of their underlying substrates and mecha-
nisms. The relation between brain and behavior can be investi-
gated experimentally by using pharmacological agents, lesions,
or animals with naturally occurring or experimentally induced
deficits to distinguish between processes, subprocesses, and
modulating influences (Cernak, 2005; D’Mello and Steckler,
1996). Of particular interest is the identification of new tar-
gets, pathways, and mechanisms of drug action (Matthews and
Kopczynski, 2001; Snaith and Térnell, 2002; West et al., 2000).

Animal models simplify complex phenomena, but at the
same time the use of an animal model should allow the confir-
mation and/or rebuttal of specific hypotheses (Marcotte et al.,
2001). If the animal model is too complex to provide clearer
answers than other methods, then its availability and applica-
tion does not advance scientific insight and it is not useful (Mas-
soud et al., 1998). However, if ethical considerations prevent
experimental manipulation of the target species, e.g., humans,
then it may be “permissible” to use phylogenetically “lower”
species in animal models to gain information.

Animal models can also be used to translate insights gained
in preclinical animal studies to the clinical setting (and vice
versa; Porges, 2006; Waldman and Terzic, 2010). For instance,
animal models can be used to assess the effects of putative neu-
roprotective, antidegenerative, revalidation-supporting, mental
health-promoting, and/or cognition-enhancing compounds or
treatments (Allain et al., 1998; Frazer and Morilak, 2005; Hitze-
mann, 2000; Willner, 1998; Wong et al., 2002), and to evaluate
the risks (safety, teratology, toxicology) associated with these
treatments (Bolon, 2004; Cavero, 2010).

Validity of animal models

Nearly three decades ago, Willner (1986) argued that animal
models should possess three types of validity: face validity, pre-
dictive validity, and construct validity (Figure 2.1), a catego-
rization that has since been adopted by many researchers (e.g.,
Chesselet and Richter, 2011; Homberg, 2013). External valid-
ity, i.e., the degree of generalizability of experimental results
obtained in the laboratory to the “outside world,” has since
been added to this list (Guala, 2003). Others have reduced
or extended the types of validity that a model should possess
(Belzung and Lemoine, 2011; Cryan and Sweeney, 2011; Tord-
jman et al., 2007; Young et al., 2010). It should be noted that
the validity of a model is not a measure of the truth of findings
obtained with the model (Massoud et al., 1998).
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Ammal..
' model &

TO*

Face validity: is the extent of descriptive similarity
between model and “outside or real world”

Predictive validity: is the degree to which a
model allows for making a sound prognosis

Internal validity: is the extent to which the
observed effects can accurately be attributed to

the independent variable(s) and not to the
action of confounding variables;
relevant if the emphasis is placed on
investigating causal connections (under
controlled experimental conditions)

e

Construct validity: reflects the soundness of
the theoretical rationale of a model

N

v

Translational (T) research: is the translation of scientific discoveries, based on results gained in

(among others) studies using valid animal models into practical applications (diagnosis, therapy,
prevention)

T2
T3
T4

External validity/Generalizability: is the degree to which the results of a study can be
generalized to the “outside” or “real world,” i.e., to and across populations and environments

Insights gained in stages T2-T5 may
feed back to the first two stages, T0, T1

Figure 2.1 Hierarchy of validities in animal models, and stages in translational research.
The uppu left column shows the hierarchy of validities that is taken as the basis for animal model development. Face validity is in a special position, as a lack of

iity does not per se invalidate an animal model. Validity is subdivided into two classes: internal and external validity. This differentiation is only applicable to
ents that investigate causal relationships (modified and extended from Fig. 10.1 in van Zutphen et al,, 2009: 201).
slational research distinguishes between different stages, most commonly T1-T4 (Drolet and Lorenzi, 2011; Waldman and Terzic, 2010), of which T1 is “the

transfer of new understandings of disease mechanisms gained in the laboratory into the development of new methods for diagnosis, therapy, and prevention and

their first testing in humans” (Woolf, 2007).
*-Waldman and Terzic (2010)

suggested extensions of translational stages to include TO, preclinical research (in vitro and in vivo animal model-based research),

and TS5, improving the wellness of populations by reforming suboptimal social structures.
The bidirectional and recursive relationship between animal models, translation to applications, and reverse translation to animal models is indicated in Figure 2.1
by the two-headed arrow to the first stage of translational research (T1). However, insights gained in later translational stages may also feed back to earlier stages,

including TO and T1.

(With kind permission from Reed Business Education)

Models are validated to increase confidence in the
model. Validation provides information about the plausibil-
ity and consistency of the interpretation of data generated
with the animal model. Validity is a major criterion for
establishing the worth of animal models (Holmes, 2003),

although it should be recognized that no animal model is
valid in all situations and for all purposes. Validity is
restricted to a specific use of the model, and thus must
always be open for discussion and re-evaluation (Silva,
1993).



