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Foreword

The optimization theory field is already well defined, strong and mature, with
plenty of theoretical results and remarkable applications. Nowadays, it takes courage
to publish a new book on classical optimization issues. Although it is said that
anyone can conceive a new optimization technique, outperforming the existing
algorithms in terms of convergence speed and efficient implementation is rather
difficult. However, improvements should be possible.

What makes this book interesting, and original at the same time, is something
that is often missing from publications of quality scientific literature: the
engineering point of view. As Albert Einstein said so well, it is quite sad to see how
a beautiful theory is destroyed by an ugly reality. In this spirit, optimization theory
has plenty of pure theoretical results that are quite impossible to transform into
efficient numerical procedures to be employed later in real applications. However,
the milestone of this book is, seemingly, the optimization algorithm for the benefit
of application.

The authors succeed in describing quite a large panoply of optimization
techniques, from simple ones like linear or dynamic programming, to complex ones
including nonlinear programming, large-scale systems, system identification or
automatic control strategies. Of course, no-one can encompass in a single volume all
the optimization methods that the authors refer here to as “exact”, i.e. non-heuristic,
or stochastic. For example, the recent group of Linear Matrix Inequality (LMI)
optimization techniques, based on the interior point methods, is not presented here.
However, I assume that the final goal to fulfill here was not to cover all possible
topics in optimization, as in a treatise. The authors rather intended to meet the
engineering need for clear and efficient optimization procedures ready to be
implemented and, moreover, easy to adapt to specific applications. In spite of
optimization toolboxes or dynamic link libraries that can be found on various
software platforms, the user is faced with two major problems when approaching
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applications that require optimization of some criteria. First of all, he/she does not
know very well the meaning of input arguments to be set for a function
implementing some optimization technique. This book enlightens the user in this
aim, by revealing how to configure the numerical procedure associated with each
optimization technique. Second, he/she could not modify the optimization function
if some application requirements are to be met. On the contrary, very often,
problems within specific applications are reformulated, in order to adapt to some
available optimization procedure, which, of course, could change the initial nature of
those applications. This book describes the steps of each algorithm in a clear and
concise manner, so that anyone can implement it in some particular way, if
necessary.

The methods described in the book include: linear programming with various
implementations, nonlinear programming, dynamic programming with various
application examples, Hopfield networks, optimization in systems identification,
optimization of dynamic system with particular application to process control,
optimization of large-scale and complex systems using decomposition techniques,
optimization and information systems.

As described above, the reader may understand that the book is just an
optimization algorithms compendium, which is not true at all. It is much more than
that. For each algorithm, where possible, a sound analysis concerning its foundation,
convergence, complexity and efficiency is presented. Easy to follow examples also
exist, where possible. Most of the numerical procedures introduced here are
improved compared to the original or other improved procedures found in the
scientific literature.

As a final word, I am pleased to see that exact optimization methods could be
improved and, moreover, help the engineer, regardless of the fields of activity, to
better understand them and how to apply them, and what their limitations are, etc.
The authors were clearly inspired to write such a book, which, 1 hope, will be
welcomed both by the scientific community and practitioners.

Dr. Neculai ANDREI

Scientific Director

Research Institute for Informatics

Member of Academy of Romanian Scientists
Bucharest, ROMANIA

November 2012



Preface

The purpose of this book is to introduce the most important methods of static and
dynamic optimization, from an engineering point of view.

The methods are exact, in the sense that optimum solutions are searched by means
of accurate, deterministic numerical algorithms, the convergence being soundly proven
for most of them.

In order to focus on the optimization algorithms and to make the presentation
friendly, the proofs of various results are often not developed. However, some remarks
or short rationales regarding the principles of various proposed algorithms, sometimes
with additional references allowing the interested reader to explore the optimization
topics in depth, are given.

When the optimization algorithms are not too complex, some easy to follow and
reproducible implementation examples are presented.

The methods described within the book include:

— linear programming with various implementations;

— nonlinear programming, which is a particularly important topic, given the wide
variety of existing algorithms;

— dynamic programming with various application examples;

— Hopfield networks;

— optimization in systems identification;

— optimization of dynamic systems with particular application to process control;
— optimization of large-scale and complex systems;

— optimization and information systems.
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Optimization techniques for difficult problems implementing metaheuristic,
stochastic and suboptimal approaches will be addressed in a different book.

This book was produced within the framework of the European FP7 project
ERRIC (Empowering Romanian Research on Intelligent Information Technology),
contract FP7-REGPOT-2010-1/264207 and developed in cooperation between French
and Romanian scientists.

Pierre BORNE, Dumitru POPESCU, Florin Gh. FILIP and Dan STEFANOIU
Lille and Bucharest
November 2012



Acronyms

AIVM adaptive instrumental variables method

AIVMA  adaptive instrumental variables method with exponential window

AIVMO  adaptive instrumental variables method with rectangular window

ALSM adaptive least squares methods

ALSMA  adaptive least squares methods with exponential window

ALSMO  adaptive least squares methods with rectangular window

ARE algebraic Riccati equation

ARMAX class of autoregressive moving average with exogenous control
identification models

BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm

DAS decision assistance systems
DFP Davidon-Fletcher-Powell algorithm
DSM direct search method(s)

EDSM evolving direct search method(s)
ELSM extended least squares methods

ET estimation theory

FIR finite impulse response

GM gradient(-based) methods

GNM Gauss-Newton method

I/0 Input-Output

IIR infinite impulse response

ITaaS Information Technology as a Service
ITC Information Technology and Communications
IVM instrumental variables method

KBF Kalman-Bucy filter

KBP Kalman-Bucy predictor

LDSM linear direct search method(s)

LOP linear optimization problem(s)

LQ linear quadratic solution or order
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LQG
LSM
LTR
NLOP
NRM
OoT
RIO
SaaS
SI
SOP
™

linear quadratic generalized solution or order
least squares method

loop transfer recovery

nonlinear optimization problem(s)
Newton-Raphson method

optimization theory

class of rational input-output identification models
Software as a Service

systems identification

separable optimization problem(s)
transformation methods
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Chapter 1

Linear Programming

1.1. Objective of linear programming

The purpose of linear programming [MUR 83, MEL 04, VAN 08] is to optimize
a linear function J(x)=f"x of a set of variables grouped in vector xe R" in the
presence of linear constraints. This is one of the rare cases where an iterative
algorithm converges into a finite number of iterations, by only using elementary
manipulations.

1.2. Stating the problem

Consider a polyhedron in R" (with »>2), defined by a system of linear
inequalities Ax <b . To each point of polyhedron, a value defined by linear function

Jx) =17 is assigned. Here, fe R” is a constant vector, initially known. By linear
programming we understand a procedure, which enables us to solve the problem of

finding a point xe R" of the polyhedron that minimizes or maximizes J function.
Since the maximization problem is similar to the minimization one. This problem
reads as follows:

min f’x

xeR"

. Ax<b [1.1]
with :
x>0,
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where “min” means minimize and: Ae R™, be R", with m<n. Usually, J is
referred to as economic function or objective function or simply criterion (of linear
optimization). The inequalities Ax <b define the constraints of the problem, while
“s.t.” stands for “subject to”. Matrix A is by nature of maximum rank (i.e. epic), in
order to make the constraints independent of each other.

To illustrate the corresponding geometric problem [1.1], consider the case of a
polygon (in the Euclidean plane), as shown in Figure 1.1.

Figure 1.1. Geometrical representation of the linear optimization problem

The set of parallel lines is generated by considering f’xequal to various
constants, hence the name /inear programming problem. In this context, a result of
mathematics states that the minimum can only be obtained at one of the
polyhedron vertices (e.g. x" in the figure). If the lines are also parallel to a side of
the polyhedron, then all the points of this side correspond to an extreme of the
objective function. More generally, a non-vertex polyhedron point can correspond
to an optimal solution, only if there is an optimum side of the polyhedron
that includes it.



