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Series Foreword

The yearly Neural Information Processing Systems (NIPS) workshops bring
together scientists with broadly varying backgrounds in statistics, mathe-
matics, computer science, physics, electrical engineering, neuroscience, and
cognitive science, unified by a common desire to develop novel computa-
tional and statistical strategies for information processing and to under-
stand the mechanisms for information processing in the brain. In contrast
to conferences, these workshops maintain a flexible format that both allows
and encourages the presentation and discussion of work in progress. They
thus serve as an incubator for the development of important new ideas in
this rapidly evolving field. The series editors, in consultation with work-
shop organizers and members of the NIPS Foundation Board, select specific
workshop topics on the basis of scientific excellence, intellectual breadth,
and technical impact. Collections of papers chosen and edited by the or-
ganizers of specific workshops are built around pedagogical introductory
chapters, while research monographs provide comprehensive descriptions of
workshop-related topics, to create a series of books that provides a timely,
authoritative account of the latest developments in the exciting field of neu-
ral computation.

Michael I. Jordan and Thomas G. Dietterich



Preface

Machine learning is one of the fastest growing areas of computer science,
and with good reason: predictive machine learning models trained on ever
growing data sets provide relevant information to scientists and business
decision makers alike, as well as enabling intelligent consumer applications.

Structured prediction refers to machine learning models that predict re-
lational information that has structure such as being composed of multiple
interrelated parts. For example, these models are used to predict a natural
language sentence or segment an image into meaningful components. Struc-
tured prediction models are important in many application domains and
have been used with great success in biology, computer vision, and natural
language processing.

This volume is not the first on the topic of structured prediction; seven
years ago, in 2007, MIT Press released the edited volume Predicting Struc-
tured Data. Since then structured prediction has blossomed into many appli-
cation areas, but it has not settled down yet; there continues to be a stream
of interesting and original work. In an introduction chapter, we summarize
the state-of-the-art and recent developments. The remainder of the volume
is a careful selection of contributed chapters.

We would like to thank all chapter contributors for their high-quality work,
Marie Lufkin Lee from MIT Press for her support and patience, Suvrit Sra
for help in preparing a IATEX template for this volume, and Jasmin Pielorz
for help with proofreading and copy-editing.

We dedicate this volume to the memory of Ben Taskar, a pioneer of the field.

Sebastian Nowozin, Peter V. Gehler,
Jeremy Jancsary, Christoph H. Lampert

Cambridge, Tiibingen, Vienna, Klosterneuburg
January 2014
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Structured prediction refers to machine learning models that predict multiple
interrelated and dependent quantities. These models are commonly used
in computer wvision, speech recognition, natural language processing, and
computational biology to accurately reflect prior knowledge, task-specific
relations, and constraints. A wide variety of types of models is used, and
they are expressive and powerful, but exact computation in these models
1s often intractable. This difficulty, paired with the practical significance,
has resulted in a broad research effort in recent years to design structured
prediction models and approximate inference and learning procedures that are
computationally efficient. This chapter gives an introduction to structured
prediction and summarizes the main approaches. It includes a discussion of
the research trends in the field since 2007 and provides further references for
the interested reader.



2 Introduction

1.1 Structured Prediction

The general structured prediction problem is defined as follows. Given an
observation z € X, make a prediction y € Y(z) as

y=flx). (1.1)

The set Y(z) is typically finite but exponentially large, and its size may
depend on the input xz. A popular choice is to use an index set I =
{1,2,...,m} and define both input z and prediction y as

= [Bycsesylimls and Y =YLy < -5 m)

For example, I can index all words in a sentence or all pixels in an image.

Researchers working in structured prediction are concerned with the
representation of the function f, procedures for evaluating f(z) for a given
input x, and learning f from a class of functions F given annotated training
data consisting of pairs (z,y) of data instances.

We describe these three aspects below, but first we would like to define
how to measure the quality of a structured prediction model (1.1) by means
of loss functions.

Loss Functions and Decision Rules. A generally accepted criterion for
assessing the quality of our model is that of the expected loss of our
model as a function of the true generating probability distribution ¢(z,y)
and a loss function! ¢ : Y(x) x Y(z) — R. The distribution ¢(z,y) is
the sampling distribution we encounter when our model (1.1) is used; for
example, it could be the joint distribution of emails z and spam/no-spam
decisions y that are sent to a particular email address. We do not know
q, but a standard assumption is that we are able to obtain independent
and identically distributed (iid) samples from it. The loss function ¢(z,y)
quantifies—on an arbitrary but fixed scale—the loss suffered if z happens
to be the truth and we decide for y. The quality of a structured prediction
model can now be quantified as the risk,

R(f,4,8) = Ez)nq [£(y, f(2))] - {12}

1. Alternatively, an equivalent definition can be made using utility functions; we want to
maximize utility or minimize loss, but except for a change in sign, both definitions are
identical. The loss function can be more generally defined as £ : Y x D — R, where D is
the decision domain, which can differ from Y.
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Because R depends on the unknown distribution ¢, the expectation is
approximated using a data set D = {(m(i),y(i) )}i=1,..~ sampled iid from
q, yielding the empirical risk,

emp(faD l) Z ¢ y() f( x(z ))- (1.3)

While there are different philosophies with respect to how to best build
structured prediction models and which loss functions are relevant to an
application, the criterion (1.3) is widely accepted.

The best possible risk, which is the lowest possible, is known as the Bayes
risk. It is defined by making the optimal decisions with the knowledge of
g, that is, Rpayes(q,€) = R(fBayes,q;€), where fpayes is the Bayes-optimal
predictor,

fBayes(T) = argmin E, (|2 [€(2,9)] - (1.4)
yeY(z)

Representation. For representing the function f, different choices exist;
one popular branch of the literature defines f(z) as the maximizer of an
auxiliary optimization problem,

f(z) = argmax F(z,y,0), (1.5)
yeY ()
where § € © are model parameters. In many applications, solving (1.5)
corresponds to solving a combinatorial optimization problem. The function
F(z,y,0) to be maximized is commonly parametrized as a linear form,

F(z,y,0) = (¢(z,y),9), (1.6)

where © = R? and ¢(z,y) is a joint feature map, transforming z and y into
a large but fixed size feature vector. The class of functions is now indexed
by #, and we have

F={F(.,-,0)|0 e R%}. (1.7)

Another approach to construct structured prediction functions is by starting
with a probabilistic model and applying Bayesian decision theory (Berger,
1985). For this we assume that we have a model for the conditional distri-
bution p(y|z; @) over Y(z). Together with a loss function ¢, we can then use
the Bayes decision rule,

f(.’L‘) = argmin ]Ez~p(z|1:) [ﬂ(z y)] (18)
yeld(x)
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This rule is identical to (1.4), except we replaced the unknown distribution ¢
with our model p. Intuitively (1.8) selects our prediction so that we minimize
our expected loss under every possibility z, weighted by our beliefs about
the state of the world as encoded in p(z|x). The similarity between (1.8)
and (1.4) implies that if p equals the true distribution ¢, then our decisions
made using the Bayes decision rule will be optimal, that is, they will achieve
the Bayes risk.

Evaluation. Using either definition (1.5) or (1.8), in order to make predic-
tions, we need to solve an optimization problem, an instance of an inference
problem. Depending on the structure of F' and Y(x), problem (1.5) may be
intractable to solve exactly, and we need to develop approximate inference
methods. When using (1.5), such methods are often called energy minimiza-
tion methods, and a large part of the structured perdiction literature is con-
cerned with their properties. In case (1.8) is used, the tractability depends
on the distribution p, the loss function ¢, and the set Y(x). For example, if
the so-called 0/1-loss £/, (2,y) = 1{y+.} is used, the problem reduces to the
mazximum-aposteriori (MAP) decision rule,

f(x) = argmax p(ylz). (19)
yeY(2)

If the loss function decomposes additively over individual dimensions of
its arguments, then we can solve (1.8) in two steps, where first a set of low-
dimensional marginal distributions p(y;|z) is inferred, and then decisions are
independently made by minimizing E, (., |2) [€i(2i,¥:)] (Marroquin et al.,
1987). Inferring the marginal distributions p(y;|z), also known as marginal
beliefs, requires probabilistic inference methods for the model. In the last
fifteen years, a large number of approximate inference methods have been
developed to this end.

One important class of methods, the linear programming relaxations, ap-
ply to discrete graphical models (Wainwright and Jordan, 2008). For these
models (1.5) can be reformulated as an integer linear program, which can
be relaxed to a polynomial-time solvable linear program for which special-
ized message-passing algorithms have been developed. These algorithms are
now popularly used and provide robust inference for otherwise challenging
models, but until recently, understanding the structure and limitations of
the linear programming relaxation approach has been an open question.

Learning. Structured prediction models can be learned in different ways
from a given data set of iid samples. If the direct form of the predictor (1.5)
is adopted, then the most popular choice is regularized risk minimization
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(Vapnik and Chervonenkis, 1974), in which we minimize the regularized
empirical risk,

N
f = argmin (/) + = ;ay“% f(@®)). (1.10)

Here €(f) is a regularizer that controls the capacity of the learned model i
While (1.10) has served as motivation for a large number of general machine
learning methods, the application to structured prediction problems was
only enabled through the work of Tsochantaridis et al. (2004), who showed
how (1.10) can be implemented in the structured case when the linear
form (1.6) for the definition of f is used.

They propose the structured support vector machine, which learns the
parameters 6 of the predictor f by solving the problem

N
min Loz o A E L(v® z®
+ it oW | [

=1

where A > 0 is a regularization parameter, and we define

L(y®, 2% 9) = er;l(a)(c_)) [((y(i),y) — F(z,4@ 9) + F(x(i),y,ﬁ)] . (1.12)
yeY(zt

It can be shown that L(y®, z® 0) > ¢(y®, f(z®)), that is, L is an
upper bound of ¢ for any 6. Therefore, (1.11) is an upper bound of the
empirical risk (1.3), and by minimization of the upper bound, we can find
model parameters with low empirical risk. Given enough training data, the
empirical risk will be close to the true risk (1.2). While it is not trivial
to solve (1.11), it is a convex optimization problem, and the tractability
of the formulation has enabled a large number of structured prediction
applications.

When the probabilistic perspective is adopted, learning of the model
is performed using the model likelihood, using either maximum likelihod
estimation (MLE) or Bayesian inference (Koller and Friedman, 2009). The
model can either be generative p(z,y|f) or discriminative p(y|z,0) as in
conditional random fields (Lafferty et al., 2001). The generative model
provides an explicit model for the inputs x, whereas the discriminative model
always conditions on an observed x. For the following example, let us use
a discriminative model. We specify a prior distribution p(@) for the model
parameters and then solve

N
6= argrréax p(0) Hp(y(i)lm(i), &), (1.13)
-

i=1
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for the maximum likelihood estimate @ or use Bayes rule to define a posterior
belief over 6 given the data set D as

p(0|D) = Iﬁ%l))lg) (1.14)
_ pOILL p(y?]=1, 0) :
= ~ = (1.15)
Jop(O) TTiZ, p(y @]z, 0) do
N
< p(®) [[p?1=®,0). (1.16)
=1

At test time, given a new observation x, we proceed as follows. In case the
MLE is used, the predictive distribution is derived from the point estimate
6 simply as p(y|z,0). In case the posterior p(#|D) is used, the predictive
distribution marginalizes over all parameter uncertainty as

p(ylz) = /O p(yl,6) p(6D) do. (1.17)

Learning structured prediction models is challenging because it is usually in-
tractable to perform exact computation of the required quantities, with few
exceptions—for example, in so-called linear chain models. In both (1.13)
and (1.16), we use p(y™ |z, 0), but this important distribution typically
cannot be exactly computed. Likelihood-based learning of structured mod-
els has therefore required approximations; a large variety of approximate
inference and estimation methods have been proposed. A rough grouping of
these methods is into stochastic and deterministic approximations.

Stochastic approximations perform Monte Carlo simulations to approx-
imate expectations and integrals in the learning objective. Examples are
MCMC-MLE (Descombes et al., 1999) and stochastic maximum likelihood
approaches such as contrastive divergence (Hinton, 2002; Carreira-Perpinan
and Hinton, 2005).

Deterministic approximations typically optimize an auxiliary objective
function; the class of variational approximations such as mean field meth-
ods (Saul and Jordan, 1995; Xing et al., 2003), loopy belief propaga-
tion (Yedidia et al., 2004), or more generally methods derived from the
minimization of statistical divergence measures (Minka, 2005) are com-
monly used for otherwise intractable models. Another class of determinis-
tic approximations instead modify the likelihood function itself to obtain
tractable estimators; these include the pseudolikelihood (Besag, 1972, 1977),
more general composite likelihoods (Lindsay, 1988; Varin et al., 2010), and
score matching (Hyvarinen, 2005).
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All these approximations have different trade-offs with respect to compu-
tational effort, the robustness and accuracy of the inference results, as well
as the theory that is known about them. It is fair to say that while great
progress has been made, for most models, there is not yet a clear favorite
among the above approximate methods.

1.2 Recent Developments

We now briefly summarize the most significant developments in the field of
structured prediction since around 2007, when the previous volume in this
series was published (Bakir et al., 2007).

Joint Optimization over Parameters and Inference. Meshi et al. (2010)
introduced a clever method to approximately solve (1.10) for discrete graph-
ical models. In their method they rewrite ¢ as a maximization problem over
vectors pu in the local polytope so that (1.10) is of a min-max structure with
multiple inner maximization problems. The inner problems corresponding
to ¢ are then dualized using convex duality to obtain a joint min-min prob-
lem over parameters 6 as well as dual message vectors. The advantage of
this is that one can now interleave message passing updates and parame-
ter updates, whereas previously every parameter update required a message
passing scheme to run to convergence. The result is an efficient learning
method. A similar but more general method has been proposed by Hazan
and Urtasun (2010). In this volume, Chapter 9 by Justin Domke continues
this line of work to learn more expressive non-linear model potentials in
which the parameter update step is replaced by a non-linear logistic regres-
sion subproblem.

Integrated Estimation and Inference. A recent take on how to deal
with the intractability of structured prediction models is due to Domke
(2011), Ross et al. (2011b), and Stoyanov et al. (2011). The idea is to
take a model and an iterative approximate inference procedure, such as
loopy belief propagation, and to view them as one computational unit
that iteratively transforms some initial state into an inference result. As
such, when using a fixed number of inference iterations, it is just a non-
linear differentiable mapping from parameters and observations to inference
results. This mapping is parametrized by the original model parameters, and
as long as we can compute the gradient with respect to these parameters, a
gradient-based optimizer can be used to minimize the empirical risk (Domke,
2013; Ross et al., 2011b). The combination of model and approximate



