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PREFACE

The three volumes of this “fundamentals handbook™ are designed to meet a need
frequently felt by engineers: the need to broaden themselves and to keep up with
technological developments so that they can do a better job. In an environment of
rapid technological and scientific advance, the importance of keeping up-to-date
is self-evident. The importance of not overspecializing is less recognized, but it is
there. A versatile engineer is a tremendous, asset to an employer in meeting
today’s changing needs, ways, and means.

These three volumes constitute a coherent, concise treatise of the core areas of
electrical and computer engineering with emphasis on system, device, and circuit
design. While a handbook of this type is not new in other disciplines—onsider
The Handbook of Physics, for example—it is the first of its kind in electrical
engineering. Each volume of The Handbook of Physics is devoted to a significant
area of research, and a similar handbook of electrical engineering at the same
level would be enormous. However, the engineer’s job, unlike the physicist’s is not
to search for new engineering principles but to apply existing principles to design
and develop new preducts. The level of these three volumes was determined with
this objective in mind.

Volume II covers engineering systems: communication, control, instrumenta-
tion, power. and energy. Section } gives a brief, self-contained presentation of
statistical methods, including some aspects of statistical physics used in engineer-
ing systems analysis. In line with current literature, probability is introduced as a
“measure” on elementary events. However, the meaning of “measure” is ex-
plained heuristically and no previous knowledge of measure theory is assumed.
“mong the topics covered, stochastic processes, queueing theory, and thermal
noise are useful in the analysis and design of communication, control, and
instrumentation systems, while Maxwell distribution and transport processes are
essential to the understanding of energy devices. Section 2, on communication
principles, presents basic information for designing communication systems: the
time and frequency uncertainty relationship, the sampling theorem, modulation
and noise, coherent detection, Bayesian decision, information theory and coding,
baseband shaping, optimum performance of communication systems, equalizers,
multiplexing, and spread spectrum communication. Section 3 starts with an
analytical treatment of communication electronics for AM and FM systems and
then proceeds to two major application areas, satellite communication and radar.
The satellite communic .ion topics covered are system engineering, hardware,
multiple access techniques, capacity allocation, packet switching, and satellite-
aided mobile radio systems. The material on radar technology includes principles
as well as advances and limnitations in the modes of radar operation, data analysis,
and presentation. Section 4 joins the concepts of classical and modern optimal
control and presents the material so that it is accessible to design and project
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X PREFACE

engineers. Optimal linear control and filtering is derived by cost minimization
(simply completing the squares). An extensive set of simple computer programs
for designing optimal control and filtering and simulation in both continuous and
discrete time is provided to aid the practicing engineer.

Section 5 starts with an overview of instruments and then proceeds to com-
monly used subsystems, sensors and transducers, instrumentation amplifiers,
microprocessors in instrumentation, and output devices including oscilloscopes,
digital multimeters, and so on. Each of the instrument subsystems is discussed in
detail with emphasis given to salient design considerations. Instruments in two
specialized areas, biomedical instrumentation and telecommunication and telem-
etry instrumentation, are given selected coverage.

Section 6, on power apparatus and systems, gives thorough coverage in selected
areas: motors and generators are analyzed with, the equivalent circuit approach in
which the power absorbed or delivered from a virtual element represents con-
version. While it is the simplest approach, it is also the approach used by design
engineers to evaluate the effects on performance of machine parameters, magnetic
saturation, harmonics, and so on. Sections on transmission lines, carrier com-
munication, and relaying present important design information and are written
carefully, without assuming previous knowledge of the subjects. An article on
economic and environmental issues of power generation is also included.

Section 7, on energy engineering, covers energy sources and conversion technol-
ogies that are likely to have maximum impact in the coming decade: solar energy
conservation and utilization, solar cells, thermionic and MHD converters, and
nuclear power reactors. Also included is a short article on energy policy analysis
using the Brookhaven energy reference system.

I am very grateful to Drs. J. G. Truxal, R. W. Licky, R. E. Miller, and S. S.
Director for their many helpful suggestions, to Da Zhong Zheng, Dao Rung Hsu,
and Wen Min Pan, Visiting Scholars from the People’s Republic of China, for
their help and helpful suggestions in the final preparation of the manuscript, and
to the section editors and contributors for their help. Many of the section editors
and contributors are leaders in their respective areas of specialization, and their
reputations are far beyond what these three volumes can hope to enhance. They
contributed because they share a common goal: to help our fellow engineers hetp
themselves and to share American know-how with the rest of the world in a most
effective way.

SHELDON S. L. CHANG
Stony Brook, New York
September 1982
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The present section gives a brief self-contained introduction of the subjects listed.
Although each subject is an important field of study by itself, there are the same sets of
ideas and methodology which make a unified presentation effective.

Sections 1.1 and 1.2 on probability and statistical distributions give the basic mathemati-
cal concepts and methodology. Probability and conditional probability are defined in
terms of measures on a point set. Bayes’ theorem follows directly from the definitions. The
concepts of a random variable, mean value, standard deviation, and variances are
introduced which lead to the central limit theorem, moment-generating function, and
various statistical distributions.

Section 1.3 gives a brief introduction to elements of queueing theory which have found
many applications in communication and computer engineering. Equations for the M /M /1
queue, M/M/n queue, and Erlang distribution are derived. A problem that cannot be
tackled with steady-state queueing theory but in existence everywhere is that of queueing
dynamics. An approximate solution is gives im tesms of two differential equations for the
mean value and variance of queue length. These equations can be numerically integrated
to predict queueing behavior under transient and time-varying conditions.

Section 1.4 on stochastic processes introduces the concepts of stationarity, correlation,
and spectral density functions. Wiener theorem relates correlation function, and spectral
density as transform pairs of each other. Transmission equations that relate the statistical
properties of the input and output variables of a linear system are derived. Gaussian
distribution, white noise processes, and their applications to communication and control
problems are discussed.

Sections 1.5, 1.6, and 1.7 on statistical physics, partide distributions, and transport
processes emphasize topics which are fundamental to solid-state electronics and energy
conversion. The second law of thermodynamics, equipartition of energy, and Maxwell
distribution are obtained as natural consequences of energy censervation, and the law of
large numbers, which states that the most likely states are sbserved. Fermi and Bose—Ein-
stein distributions are derived with the introduction of elementary particle statistics.
Transport effects such as electrical and thermal conduction, visepsity, diffusion, the Hall
effett, and the various laws that relate these coefficients to one another are obtained as
consequences of oollision redistribution of energy, msiss, sad momentum.

1.1 BASICS IN PROBABILITY AND STATISTICS

The probability of an cvent is the likelihood of its happening, either fremn direct knowledge or from
thewcordcdmhﬁvehequncyofwcmsonhckindinmccwmolm.

For instance, the probability of any particular face turning up in threwiag a die is 1 /6, from our
direct knowledge. The probability of rain at a given location in a given day of the year is calculated
from accumulated data over the years. Many of the mathematical laws governing probability can be
obtained intuitively. However, we can sharpen our concept on probabitity by associating it with a
measure on) a point set.

L.1.1 Probsbility as a Measure* on Elementary Events

Mathematically, probability can be defined as follows. Let x denote clements in a set W, and p(x)a
measure defined on each clement x with the following properties:

p(x)=0. xew )
Su(x) =1 @

*Many branches of mathematics are inspired by physical events. A well-known example is Newton’s
caleulus, which was inspired or motivated by his study of kinetics. It is probably not far from the truth
to say that measure theory is inspired by the study of probability. The correspondence between the
two fields is so natural and obvious that previous knowledge of measure theory is not required for an
understanding of the subsequent material. The reader may simply regard the term “measure” as
synenymous with “assigned aumerical value.” )

LR PRI



BASICS IN PROBABILITY AND STATISTICS 3

The symbol S represents either sum or integration, depending on whether x is discrete or continuous,
and the symbol W underncath means that S is over the set W. ) ]
An event A is represented as a subset of W, and its probability p(A4) is defined as

P(4)=Su(x) 3)
Definition. Let {4,} denote the subsets 4, i =1,2,.... {4,} is said to be a partition of W if
ANA,=0, i 4
ud, =W )
In (4), 0 denotes a null set. It follows from (2) and (3) that
Zp(4)= 8 n(x)=1 (6)
i

The reason that we equate probability with measure on a point set is as follows: For an event to
occur, there are many, many possible ways. Each possible way is an element in W. Similarly, each
possible way for it not to occur is also an element in W. A partition in W describes events that cannot
occur jointly, but one of which must occur. For instance, in throwing a die, one and no more than one
of the six faces must turn up.

The following theorem is useful in studying joint events.
THEOREM. If (4,} and (B)} are partitions of W, and -
C,;=ANB; U]
then {C;;} is a partition of W. '
The theorem is easily proved by showing that (4) and (5) are satisfied:
C,NCy=ANBNANB,
=(4;n4,)N(B;NB))

I (i, j) 5 (k, 1), either i # k or j# /. At least one of the intersection sets is a null set. Therefore,
C,,NCy, is a null set. Furthermore,

u C,/=IlJ'i.J(A,ﬁ)Bj)=ILJ(UA,)ﬁB/

“‘_'UB’:W
-

1.1.2  Joint Probability, Conditional Probability, Independent Events

The correlation between different events is described by the notions of joint probability and
conditional probability. They are defined as follows.

Joint Probability. Let A4 and B denote subsets of W. The joint probability p(4, B) is defined as
p(A,B)= S 8
p(4,B)= 8 pu(x) ®

It is the probability that both events A and B occur.

Conditional Probability. The knowledge that 4 has occurred is denoted by |A4. It represents a
reassignment of measure to elements x of W,

p(x|4Ay=0 ifxeAd
_B(x .
p(x}A)—;—(LA% ifxeA )

Equation (9) means that the measure assigned to each x & A is zero, and that assigned to each element
X € A is multiplied uniformly by a factor 1/p(4) to satisfy

Sp(x)

:A —
E,M(XM) 2(4) 1




4 STOCHASTIC PROCESSES, STATISTICAL PHYSICS
From (3), the conditiéna] probability p( B| A) becomes
p(B|A)=Sp(x|4)
s Mx) _p(4.8) (10)
Tasp(A) . p(A)
Equation ‘(10) can be rewritten as
p(A)p(B|4)=p(A,B)=p(B)p(A|B) (1
It is known as Bayes’ theorem.
Independent Events. The event 4 is independent of B if
p(41B)=p(A) (12)
Multiplying (9) by p( B) gives
p(4.B)=p(A4)p(B) (13)

Equation (13) shows that (1) if A is independent of B, then B is independent of 4; and (2) the joint
probability p( A4, B) is then the product of the individual probabilities p(A4)p(B).

1.1.3 Discrete-Valued Random Variables

A discrete-valued random variable u is defined as follows. Let {4;} denote a partition of W. Each 4, is
assigned a value u;, and the probability that u = u; is

Pu) =p(A4)=Su(x) (14)
It follows from (6) that
2p(u)=1 (15)
i
In a system with more than one random variable, sdy u'v w,..., for each variable there is a

partition of W: {A}. (B}, {C})...., and p(u,), p(v;), p(wy),..., are correspondingly defined. The
symbols ptu,), p(v)), and so on, do not represent the same function with different independent
variables. They represent the probabilities that u = u;, v =v,, and so on, and generally are different
functions {or different independent variables.

The joint probability that ¥ = u, and v = v, is given by

Pt = S, B(x) (16)

Parallel to (9)-('1) we have similar expressions for conditional measure and conditional probability:

p(yim) = $u(xia) =2 ()
p(ul)p(vjlul)zp(ul'v[)=p(v])p(ui|0j) . (18)
The following relations are readily derived:
EP(“i’”j):P(“:) (19)
j
EP(“ivUj)zl’(”j) (20)

Ep( ylu) = Ep(u.| ) =1 ed))



BASICS IN PROBABILITY AND STATISTICS ; . 5
Quite often we ignore the subscripts and write the probabilities as p(u), p(u,v), and p(ujv),

respectively. The meanings remain the same.
If u and v are independent,

p(ulo)y=p(u) and  p(u,v)=p(u)p(v) @)
1.1.4 Continuous Random Variables
In some applications the possible value of a random variable u is continuous. The probability for u to

be equal exactly to a given value u, is zero. However, given any tolerance interval *j8u, the
probability of u being within the interval u; — 8u /2 <u<u,+ 8u/2 is proportional to Su:

p(1u= i <%) = ) 8u @)

The function f is known as the probability density or density function.
A more rigorous approach is as follows. The random variable u is defined by a measurable function
u(x) on W. Let L(u,) denote a subset in W such that
N x€L(u) iffu(x)<uy (24)

The distribution function F(u,) is defined as

F(un)zL(Sul)u(X) (25)

From (3), F(u,) is recognized as the probability of u<u, and is an increasing function of u,.
F(—o0)=0and F(eo) =1
For continuous F(u,), the density function f(u,) is

v _ dF(u
sy = ) (26)
From (25) and (26), f(u,) can be written as
i L '
f() = Jim 5 S u(x) @)

where D, represents the subset of x in W with u(x) in the range u,—A/2<u<u,+A/2. The
equivalence of (23) and (26) is obvious.

For a multidimensional or vector-valued u, (27) can be generalized by considering A as a volume
element about u;, and D, as the subset defined by

x€D, iffu(x)€A (28)

In the following, we shall use F(u) and f(u) to denote the distribution function and density
function, respectively, of a random variable u.

A multiple number of random variables u, v,..., can be considered as components of a vector u.
Using (27) instead of (8), the same steps leading to (11) give

f(u.v) = f(v)f(ufo) = f(u) f(v|u) (29)

If u and v are independent, then
f(u,0)= f(u)f(v) (30)

Similar to (15) and (21), we have
f_wwf(u)du= F(20)~ F(—w0) =1 31)

[ sy do=1 ' (2)
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1.1.5 Average Valwe, Variance, Standard Deviation

The random variable ¥ and 1s measurable functions are functions on W. For any given measurable
function v(x) on W, its average value {v) is defined as

(v) = So(x)u(x) (33)

The defining equation (31) has the following implications:
1. Averaging is a linear process. If o(x) = v)(x)+ vy(x), (33) gives

(o) ={(01 ¥ 03)) = (01} +(v;) (34

2. Let g(u) denote a measurable function of the random variable u. It is then a function g{u(x)) of
x. If u is discrete valued, (33) gives

(8(4)) = Sg(u(x)w(x)
= 2g(u) Su(x) = L p(w)z(w) (35)

If u is continuous valued, we approximate g(u) with a step function and then let the number of steps
approach infinity, The end result is

(&)= j(w)g(u) du (36)

Equations (35) and (36) are also applicable when u is vector valued. The entities f(u) and du are then
the joint density of u’s components and the volume element, respectively.
3. If w and v are independent, then (30) and the vector version of (36) give

(8(u)-h(v))=(g(u))-(h(®)) (37

4. The variance of a random variable u is denoted o2 and is defined as the mean square deviation
from the mean:

o= ((u—(u))’y == ((u? = 2u(u) +(u)?)) = (u?)y~ (u)? (38)

The constant o is called the standard deviation.
5. Letw,, i=12,... N, be N mutually independent events. Let «, denote the sum

i=N

u,= 2 u;
i=1

Then
i=N
)= Y (u)
i=\
ur_(ul>:2(u:_<“:>) (39)

ol = <2<u,-—<u,>>2(u,—<u,>)>
=3 <<u,—<u,>)2)+§2 (Cu = () (, = (u)) ) (40)

Since u, and u, i # j, are independent,

(=) (= )y = (= )Y, = (0,))y = 0
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and (40) becomes

012 = 2 01’2 (41)

Equations (39) and (41) taken together has a very significant implication: The sum of N indepen-
dent random variables has an average value proportional to N, but its standard deviation is
proportional to \/ﬁ . As N approaches infinity, the ratio of its standard deviation to its average value
converges as 1/ VN . Thus the sum is more and more predictable as N increases. This is the law of large
numbers. Its more refined form is the normal distribution, which is discussed in the next section.

6. The covaniance coefficient between two random variables « and v is defined as

Cuw = (= (u))(0 ={v)}) (42)

Let g, and o, denote the standard deviations of  and v, respectively. Then

(ru-<u>| Lo o)) );0

g,

u 3

Expanding and averaging the expression above gives

yo Klu=wlle =)D @)
0,0,
Since
(Jlu=C)lfo=(e)| =[C.|
(43) gives
ICoel < 0,0, (44)
The equality sign of (44) holds if
“—0@1%2:0 (45)

u

That is, u and v are linearly dependent. The matrix

Ou: Clll.’
Cc= (C o2 ) (46)

ut v
is called the covariance matrix. 1t is positive definite if the two random variables u and v are not
* linearly dependent.

The definition of covariance matrix can be extended to m-variables u=(Up Uy..n u,): Cis a
m X m matrix with

i=1

Gy = (= u)) (= (u,))) (47
The matrix C is positive definite if no such linear dependence exist:
i=m )

at Y au,=0 (48)

EXAMPLE 1. In analog-to-digital conversion, a continuous variable u is represented as ng if
— 9
lu—ng<d , (49

where q is the separation between quantized levels. Assume that the density function f(u) is constant,



8 . STOCHASTIC PROCESSES, STATISTICAL PHYSICS

and show that

(e)=0
(=45 (50)

where e = u — ng.

Solution. Since (49) is a condition of u being represented as ng, the conditional f(u|n) is

1 . . -
f(uiny=1 7 if (49) is satisfied (s1)
0 otherwisc
L4 ey= 2 Cde=0
(e) me
s (a2 et € ]q/z _q
= —de=|— == 52
@[ e 5] &
1.1.6 Conditional Average
If u(x) in (33) is replaced by u(x|A), that is,
(v) = Sov(x)u(x|A4) (53)
w

where W D A, (v) is then the conditional average. The properties 1 through 6 of the preceding section
remain valid. Equations (35) and (36) are replaced by

(g(w))=Zp(ulA)g(u,) (54)
for a discrete random variable , and

(2 =" f(ulA)g(u) du (59)
»

for a continuous-valued u.

1.2 STATISTICAL MOMENTS AND DISTRIBUTIONS
In the present section we define statistical moments, characteristic and moment-generating functions.
and derive a number of well-known distributions. In a multiple-random-variable system, any average
value of the form

( uMpy "3>
is called an nth moment, where ny, n,,.... are nonnegative integers, and n=n,+n,+ ---. The

average value of a random variable is its first moment. The variance and covariance are secand
moments.

1.2.1 Moment-Generating Function, Characteristic Function

Let u=(u,, u;....,u,,) denote a random vector with m-components. Its moment-generating function
is defined to be

M(s)= [ i f(u)exp(s - u) du )

where the integral sign and du are understood to be m-dimensional. M(s) is recognized as the Laplace
transform of f(u) with —s as the transform variable. It is also the average value of exp(s-u). Let the
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subscripts a, b, c,..., represent integers from [ to m which may or may not be repeated. Then

88 9exXp(S" W) _ () uyu,- - Jexp(s+u)

95,08, 05,
and

9s,05,0s. - -

[ﬁLﬁﬂﬂl = Cugupt ) o
s=0

Equation (2) shows that the statistical moments are the corresponding partial derivatives of the
moment-generating function evaluated at the origin.
For purely imaginary values of s, [exp(sw)| =1 and (1) gives

|M(s)| < [ f(w) du=1 : 3)
Therefore, the integral of (1) is convergent in the neighborhood of
$= jo 4)

The characteristic function C(w) is obtained by replacing s in (1) with jw: It is the Fourier transform of
the density function

C(w) = j_‘: f(u)exp( jeo+u) du D)

Sometimes the characteristic function is obtained first, and f(u) is calculated from it by using the
inverse Fourier transform:

1 oo
u) = C(w)exp(— jw u)dw ¢
10) =y (e~ o) ®)
EXAMPLE 1. A random variable u has the following density functions
fuy = Zeet

Determine its statistical moments and characteristic function.

Solution. The Laplace transform of f(u) is

=30k

ats a-—s a’—s?
1 32 4
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There are no odd moments; the even moments are given by
‘d"M(s n!
M,= ...—’('l ==
ds s=0 a
The characteristic function is

. ) a’
Clw) = M(jw)~ R
w"

1.2.2 Multivariate Normal Distribution

The multicariate normat distribuion (MND) of m random variables u=(u,u,,..., u,) can be
expressed in terms of its density function:

fwy= ;o[ -8 (w-8)"] ()

1
(27).",.sz| .



