

APPLICATIONS

SALAH OBAYYA

MOHAMED FARHAT O. HAMEED NIHAL F. F. AREED

WILEY

COMPUTATIONAL LIQUID CRYSTAL PHOTONICS

FUNDAMENTALS, MODELLING AND APPLICATIONS

Salah Obayya

Center for Photonics and Smart Materials Zewail City of Science and Technology Giza Egypt

Mohamed Farhat O. Hameed and Nihal F.F. Areed

Center for Photonics and Smart Materials
Zewail City of Science and Technology
Giza
and
Faculty of Engineering
Mansoura University
Mansoura
Egypt

This edition first published 2016 © 2016 John Wiley & Sons, Ltd.

Registered Office

John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought

Library of Congress Cataloging-in-Publication data applied for

ISBN: 9781119041955

A catalogue record for this book is available from the British Library.

Set in 10/12pt Times by SPi Global, Pondicherry, India Printed and bound in Singapore by Markono Print Media Pte Ltd

1 2016

COMPUTATIONAL LIQUID CRYSTAL PHOTONICS

All Praise is due to Allah, and peace and blessings be upon. Prophet Muhammad and upon his family and his Companions.

The authors would like to dedicate this book to Prof. Ahmed Zewail for his continuous encouragement, support, and the opportunity to contribute to the Egypt National project of renaissance: Zewail City of Science and Technology.

The authors would also like to dedicate the book to their families, whose love, support, patience, and understanding are beyond any scope.

Production of the contract of

Preface

The turn toward optical computers and photonic integrated circuits in high-capacity optical networks has attracted the interest of expert researchers. This is because all optical packet switching and routing technologies can provide more efficient power and footprint scaling with increased router capacity. Therefore, it is aimed to integrate more optical processing elements into the same chip and, hence, on-chip processing capability and system intelligence can be increased. The merging of components and functionalities decreases packaging cost and can bring photonic devices one step (or more) closer to deployment in routing systems.

Photonic crystal devices can be used functionally as part of a comprehensive all-photonic crystal-based system where, on the same photonic crystal platform, many functionalities can be realized. Therefore, photonic crystals have recently received much attention due to their unique properties in controlling the propagation of light. Many potential applications of photonic crystals require some capability for tuning through external stimuli. It is anticipated that photonic crystals infiltrated with liquid crystals (LCs) will have high tunability with an external electric field and temperature. For the vast majority of LCs, the application of an electric field results in an orientation of the nematic director either parallel or perpendicular to the field, depending on the sign of the dielectric anisotropy of the nematic medium. The scope of this book is to propose, optimize, and simulate new designs for tunable broadband photonic devices with enhanced high levels of flexible integration and enhanced power processing, using a combination of photonic crystal and nematic LC (NLC) layers. The suggested NLC photonic devices include a coupler, a polarization splitter, a polarization rotator, and a multiplexer-demultiplexer for telecommunication applications. In addition, LC photonic crystal-based encryption and decryption devices will be introduced and LC-based routers and sensors will be presented. In almost all cases, an accurate quantitative theoretical modeling of these devices has to be based on advanced computational techniques that solve the corresponding, numerically very large linear, nonlinear, or coupled partial differential equations. In this regard, the book will also offer an easy-to-understand, and yet comprehensive, state-of-the-art of computational modeling techniques for the analysis of lightwave propagation in a wide range of LC-based modern photonic devices.

xvi Preface

There are many excellent books on LCs; however, several of these concentrate on the physics and chemistry of the LCs especially for LC display (LCD) applications. In addition, many books on photonic devices have been published in the recent years. However, it is still difficult to find one book in which highly tunable photonic crystal devices based on LC materials are discussed with a good balance of breadth and depth of coverage. Therefore, the book will represent a unique source for the reader to learn in depth about the modeling techniques and simulation of the processing light through many tunable LC devices.

The primary audience for this book are undergraduate students; the student will be taken from scratch until he can develop the subject himself. The secondary audience are the business and industry experts working in the fields of information and communications technology, security, and sensors because the book intends to open up new possibilities for marketing new commercial products. The audience of this book will also include the researchers at the early and intermediate stages working in the general areas of LC photonics. The book consists of three parts: LC basic principles, numerical modeling techniques, and LC-based applications. The first part includes three chapters where the basic principles of waveguides and modes, photonic crystals, and liquid crystals are given. From Chapters 4 to 6, the numerical techniques operating in the frequency domain are presented. Among them, Chapter 4 presents the governing equations for the full-vectorial finite-difference method (FVFDM) and perfectly matched layer (PML) scheme for the treatment of boundary conditions. The FVFDM is then assessed in Chapter 5 where the modal analysis of LC-based photonic crystal fiber (PCF) is given. The FV beam propagation method (FVBPM) is presented in Chapter 6 to study the propagation along the LC-PCF-based applications. After deriving the governing equations, the FVBPM is numerically assessed through several optical waveguide examples. The conventional finitedifference time domain (FDTD) method in 2D and 3D, as an example of the numerical techniques operating in the time domain is presented in Chapter 7.

The third part consists of six chapters to cover the applications of the LC-based photonic crystal devices. From Chapters 8 to 10, the applications of the LC-PCF for telecommunication devices, such as couplers, polarization rotators, polarization splitters, and multiplexer–demultiplexers, are introduced. In addition, the LC-PCF sensors, such as biomedical and temperature sensors, are explained in Chapter 11. Photonic crystal-based encryption systems for security applications are covered in Chapter 12. Optical computing devices, such as optical routers, optical memory, and reconfigurable logic gates, are introduced in Chapter 13.

Pı	eface			XV
PA	ART I	BAS	SIC PRINCIPLES	1
1	Duin	oinles	of Wayana day	2
1			of Waveguides	3
	1.1		luction	3
	1.2		Optical Waveguides	4
	1.3		vell's Equations	6
	1.4		Vave Equation and Its Solutions	7
	1.5	Bound	dary Conditions	9
	1.6	Phase	and Group Velocity	10
		1.6.1	Phase Velocity	10
		1.6.2	Group Velocity	11
	1.7	Mode	s in Planar Optical Waveguide	12
		1.7.1	Radiation Modes	13
		1.7.2	Confinement Modes	13
	1.8	Dispe	rsion in Planar Waveguide	13
		1.8.1	Intermodal Dispersion	14
		1.8.2	Intramodal Dispersion	14
	1.9	Summ		15
	Refe	rences	,	15
				10
2	Fund	damen	tals of Photonic Crystals	17
	2.1	Introd		17
	2.2	Types	of PhCs	18
			1D PhCs	18
		2.2.2	2D PhCs	19
		2.2.3	3D PhCs	21

	2.3	Photo	nic Band Calculations	2	1
		2.3.1	Maxwell's Equations and the PhC	2	2
		2.3.2	Floquet-Bloch Theorem, Reciprocal Lattice,		
			and Brillouin Zones	2:	3
		2.3.3		20	
		2.3.4	FDTD Method	29	
			2.3.4.1 Band Structure	29	
			2.3.4.2 Transmission Diagram	30	
		2.3.5		30	
	2.4		ets in PhCs	3	
	2.5		cation Techniques of PhCs	32	
		2.5.1		32	
			Interference Lithography	3.	
			Nano-Imprint Lithography	3.	
			Colloidal Self-Assembly	34	
	2.6		cations of PhCs	34	
	2.7		nic Crystal Fiber	3:	
	2.7	2.7.1		3:	
		2.7.2	Modes of Operation	30	
		2.7.2	2.7.2.1 High Index Guiding Fiber	30	
			2.7.2.2 PBG Fibers	30	
		2.7.3		3	
		2.7.4		3	
	2.8	Sumn		3	
		erences	·····y	3	
	11010	remees			
3	Fun	damen	tals of Liquid Crystals	41	1
	3.1		luction	41	
	3.2		cular Structure and Chemical Composition		
	0.2		LC Cell	42)
	3.3	LC Ph		42	
	0.0		Thermotropic LCs	44	
		0.0.1	3.3.1.1 Nematic Phase	44	
			3.3.1.2 Smectic Phase	44	
			3.3.1.3 Chiral Phases	45	
			3.3.1.4 Blue Phases	46	
			3.3.1.5 Discotic Phases	46	
		3.3.2		47	
		3.3.3		48	
	3.4		nysical Properties in External Fields	48	
			Electric Field Effect	48	
			Magnetic Field Effect	49	
			3.4.2.1 Frederiks Transition	49	
	3.5	Theor	titcal Tratment of LC	5(
			LC Parameters	5(
			3.5.1.1 Director	50	
			3.5.1.2 Order Parameter	50	
		3.5.2	LC Models	51	

			3.5.2.1 Onsager Hard-Rod Model	51			
			3.5.2.2 Maier–Saupe Mean Field Theory	52			
			3.5.2.3 McMillan's Model	52			
	3.6	LC Sa	ample Preparation	52			
	3.7	LCs f	for Display Applications	53			
	3.8	LC TI	hermometers	54			
			Optical Imaging				
	3.10	LC in	to Fiber Optics and LC Planar Photonic Crystal	54			
	3.11	LC So	olar Cell	55			
	Refe	erences		55			
PA	RT I	I NU	MERICAL TECHNIQUES	57			
4	Full	-Vector	rial Finite-Difference Method	59			
	4.1		luction	59			
			view of Modeling Methods	59			
			ulation of the FVFDM	60			
	11.5		Maxwell's Equations	60			
			Wave Equation	61			
			Boundary Conditions	63			
			Maxwell's Equations in Complex Coordinate	64			
		4.3.5		65			
		,,,,,,	4.3.5.1 Power Method	65			
			4.3.5.2 Inverse Power Method	66			
			4.3.5.3 Shifted Inverse Power Method	66			
	4.4	Sumn		66			
		rences	·	66			
5	Asse	ssmen	t of the Full-Vectorial Finite-Difference Method	69			
	5.1	Introd	luction	69			
	5.2	Overv	view of the LC-PCF	69			
	5.3	Soft C	Glass	70			
	5.4	Design	n of Soft Glass PCF with LC Core	71			
	5.5	Nume	erical Results	73			
		5.5.1	FVFDM Validation	73			
		5.5.2	Modal Hybridness	74			
		5.5.3	Effective Index	75			
		5.5.4	Effective Mode Area	76			
		5.5.5	Nonlinearity	76			
		5.5.6	Birefringence	77			
		5.5.7	Effect of the NLC Rotation Angle	80			
		5.5.8	Effect of the Temperature	81			
		5.5.9	Elliptical SGLC-PCF	83			
	5.6	_	rimental Results of LC-PCF	84			
		5.6.1	Filling Temperature	84			
		5.6.2	Filling Time	84			
	5.7	Summ	nary	85			
	Refe	rences		85			

6	Full	-Vectorial Beam Propagation Method		89		
	6.1					
	6.2	Overview of the BPMs		89		
	6.3	Formulation of the FV-BPM		90		
		6.3.1 Slowly Varying Envelope Approximation		91		
		6.3.2 Paraxial and Wide-Angle Approximation		92		
	6.4	Numerical Assessment		93		
		6.4.1 Overview of Directional Couplers		93		
		6.4.2 Design of the NLC-PCF Coupler		94		
		6.4.3 Effect of the Structural Geometrical Parameters		94		
		6.4.4 Effect of Temperature		97		
		6.4.5 Effect of the NLC Rotation Angle		98		
		6.4.6 Elliptical NLC-PCF Coupler		98		
		6.4.7 Beam Propagation Analysis of the NLC-PCF Coupler		101		
	6.5	Experimental Results of LC-PCF Coupler		102		
	6.6	Summary		103		
	Refe	rences		103		
7	Fini	te-Difference Time Domain Method		105		
	7.1	Introduction		105		
	7.2	Numerical Derivatives		106		
	7.3	Fundamentals of FDTD		106		
		7.3.1 1D Problem in Free Space		107		
		7.3.2 1D Problem in a Lossless Medium		109		
		7.3.3 1D Problem in a Lossy Medium		109		
		7.3.4 2D Problem		110		
		7.3.5 3D Problem		112		
	7.4	Stability for FDTD		115		
	7.5	Feeding Formulation		116		
	7.6	Absorbing Boundary Conditions		116		
		7.6.1 Mur's ABCs		117		
		7.6.2 Perfect Matched Layer		117		
	7.7	1D FDTD Sample Code		120		
		7.7.1 Source Simulation		120		
		7.7.2 Structure Simulation		121		
		7.7.3 Propagation Simulation		122		
	7.8	FDTD Formulation for Anisotropic Materials		124		
	7.9	Summary		126		
	Refe	rences		126		
Pa	rt III	APPLICATIONS OF LC DEVICES		129		
0						
8		rization Rotator Liquid Crystal Fiber		131		
	8.1	Introduction		131		
	8.2	Overview of PRs		132		

	8.3	Practi	cal Applications of PRs	133			
	8.4						
	8.5	Numerical Simulation Strategy					
	8.6		Design of NLC-PCF PR				
	8.7	erical Results	138				
		8.7.1	Hybridness	138			
		8.7.2	Operation of the NLC-PCF PR	139			
		8.7.3	Effect of Structure Geometrical Parameters	142			
			8.7.3.1 Effect of the d/Λ Ratio	142			
			8.7.3.2 Effect of the Hole Pitch Λ	143			
		8.7.4		143			
		8.7.5		144			
			8.7.5.1 Tolerance of the d/Λ Ratio	144			
			8.7.5.2 Tolerance of the Hole Shape	145			
			8.7.5.3 Tolerance of the Hole Position	146			
		8.7.6	Tolerance of the Temperature	148			
		8.7.7	Tolerance of the Operating Wavelength	150			
	8.8	Ultrashort Silica LC-PCF PR					
	8.9	Fabrication Aspects of the NLC-PCF PR					
	8.10	Summary 15					
	Refer						
9	Appl	ications	s of Nematic Liquid Crystal-Photonic Crystal Fiber Coupler	159			
	9.1	Introd	uction and had a split of a specific to specific as	159			
	9.2	Multip	tiplexer–Demultiplexer				
		9.2.1	Analysis of NLC-PCF MUX-DEMUX	159			
		9.2.2	Beam Propagation Study of the NLC-PCF MUX-DEMUX	161			
		9.2.3	CT of the NLC-PCF MUX-DEMUX	162			
		9.2.4	Feasibility of the NLC-PCF MUX-DEMUX	163			
	9.3	Polarization Splitter 164					
		9.3.1	Analysis of the NLC-PCF Polarization Splitter	164			
		9.3.2	Beam Propagation Study of the NLC-PCF Polarization Splitter	164			
		9.3.3	CT of the NLC-PCF Splitter	166			
		9.3.4	Feasibility of the NLC-PCF Polarization Splitter	168			
	9.4	Summ	ary	169			
	Refer	ences	Strate in the second of	169			
10	Coup	oling Ch	naracteristics of a Photonic Crystal Fiber Coupler				
			Crystal Cores	171			
	10.1	Introd	uction	171			
	10.2	Design	n of the PCF Coupler with LC Cores	172			
	10.3		rical Results	173			
		10.3.1	Effect of the Structural Geometrical Parameters	173			
		10.3.2	Effect of Temperature	177			
		10.3.3	Polarization Splitter Based on PCF Coupler with LC Cores	178			

xii Contents

			10.3.3.1	Analysis of the Polarization Splitter		178
			10.3.3.2	Beam Propagation Analysis		179
			10.3.3.3	Crosstalk		181
			10.3.3.4	Feasibility of the Polarization Splitter		182
	10.4	Summa	ary			183
	Refer	rences				183
11	Liqu	id Cryst	al Photoni	ic Crystal Fiber Sensors		185
	11.1	Introdu	ction			185
	11.2	LC-PC	F Tempera	ture Sensor		186
		11.2.1	Design C	Consideration		186
		11.2.2	Effects of	f the Structural Geometrical Parameters		189
		11.2.3	Effect of	the Temperature		191
		11.2.4	Effect of	the LC Rotation Angle		191
		11.2.5	Sensitivit	y Analysis		192
	11.3	Design	of Single	Core PLC-PCF		192
		11.3.1	Design C	Consideration		192
		11.3.2	Effect of	the LC Rotation Angle		197
		11.3.3		the Structural Geometrical Parameters		197
		11.3.4		the Temperature		201
	11.4	Summa	ry	•		202
	Refer	ences				202
12	Imag	e Encry	ption Base	ed on Photonic Liquid Crystal Layers		205
	12.1			otical Image Encryption systems		205
	12.2			ption Using PhC Structures		207
		12.2.1	Design C			207
		12.2.2		r/Decryptor Design		211
		12.2.3		on Results		212
	12.3	Multipl	e Encrypti	on System Using Photonic LC Layers		216
		12.3.1		l Encryption System		217
			12.3.1.1	PBG Structure		217
			12.3.1.2	Liquid Crystals		217
			12.3.1.3	Phase Modulator/Photodetector		219
			12.3.1.4	System Operation		219
		12.3.2	Simulatio			219
	12.4	Summa				226
	Refer	rences				227
13	Optio	cal Com	puting De	vices Based on Photonic Liquid Crysta	al Layers	229
	13.1			otical Computing	rive collecti	229
	13.2			r Based on Photonic LC Layers		231
		13.2.1		rchitecture		231
			13.2.1.1	PBG Structure		231
			13.2.1.2	Liquid Crystals		232
				System Operation		233

5 Summa Terences	ary	256 257
5 Summa	ury	
13.4.4	Fabrication Challenges	255
		255
		253
13.4.1	PhC Platform	253
4 Optical		252
	13.3.3.3 Simulation Results of the Reconfigurable Gate	247
	13.3.3.2 Bandgap Analysis of Photonic Crystal Platform	246
	13.3.3.1 Device Architecture	245
13.3.3	Reconfigurable Gate Based on Photonic NLC Layers	245
	13.3.2.2 Results and Discussion for AND Gate	242
	13.3.2.1 Optical AND Gate Architecture	242
13.3.2	AND Logic Gate Based on a PhC Platform	241
	13.3.1.3 Results and Discussion for OR Gate	239
	13.3.1.2 Optical OR Gate Architecture	239
	13.3.1.1 PhC Platform	238
13.3.1	OR Logic Gate Based on PhC Platform	237
3 Optical	l Logic Gates Based on Photonic LC Layers	237
13.2.3	Fabrication Tolerance	236
13.2.2	Simulation Results	233
	13.2.3 Optical 13.3.1 13.3.2 13.3.3 4 Optical 13.4.1 13.4.2 13.4.3	13.2.3 Fabrication Tolerance Optical Logic Gates Based on Photonic LC Layers 13.3.1 OR Logic Gate Based on PhC Platform 13.3.1.1 PhC Platform 13.3.1.2 Optical OR Gate Architecture 13.3.1.3 Results and Discussion for OR Gate 13.3.2 AND Logic Gate Based on a PhC Platform 13.3.2.1 Optical AND Gate Architecture 13.3.2.2 Results and Discussion for AND Gate 13.3.3 Reconfigurable Gate Based on Photonic NLC Layers 13.3.3.1 Device Architecture 13.3.3.2 Bandgap Analysis of Photonic Crystal Platform 13.3.3.3 Simulation Results of the Reconfigurable Gate Optical Memory Based on Photonic LC Layers 13.4.1 PhC Platform