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Preface

Already in 1970, about 45 years ago, it was well established that metallic struc-
tures possess valuable optical properties that are derived from their ability to
support collective electronic excitations known as surface plasmons. One of the
first plasmonics phenomena, surface-enhanced Raman scattering, was observed
in 1977 and since that thousands of original publications and many review articles
and monographs have been produced on this subject. Later, the field of plasmon-
ics exploded when it was shown that tiny metallic structures can enable optical
circuitry at the nanoscale, that an array of nanoscale holes in a thin metal film
can exhibit extraordinary optical transmission, and that specially designed metal-
lic metamaterials can operate as a left-handed medium. Driven by advances in
nanofabrication, a wide range of metallic plasmonic elements have been proposed
and realized. Many of these applications and the underlying physical ideas are
described in several very successful textbooks.

New exciting pathways to control light in ultra-compact geometries have been
opened by implementation of ‘active’ plasmonic devices in addition to passive
metallic light-concentrating structures. Among these recent achievements are
plasmonic nanolasers or spasers, as well as plasmon-enhanced light-emitting di-
odes, detectors, solar cells, and single quantum emitters. All these applications rely
on the effects of light-matter coupling in nanostructures, comprising semicon-
ductors and metals, or other perfect conductors like degenerate semiconductors,
semimetals, or graphene. Furthermore, strong coupling between surface plasmons
and excitons has been observed in plasmonic cavity structures, including both
organic and inorganic semiconductors. Beyond all doubt, exciting, new funda-
mental science and many real-life applications should be expected in this area in
the nearest future.

The purpose of this book is to give a general view of electromagnetic and
quantum phenomena emerging in metal-semiconductor plasmonic structures,
ranging from basic physical theory to the practical engineering applications such
as single-photon sources, nanolasers, ultra-compact modulators, and so on. The
essential aim of the book is to attract the attention of researchers working in the
areas of optoelectronics and physics of semiconductor heterostructures to the
new exiting ideas of ‘active’ plasmonics and to collect together the knowledge,
which is necessary to initiate their own research. Thus the potential readers of the
book are researchers and graduate-level students in physics, optical and electrical
engineering, and material science.



vili  Preface

The choice of materials and structures described in this book is mainly de-
fined by our research experience in the fields of nanophysics and nanophotonics.
Basically, we provide the data which are most frequently used in our everyday
practice; therefore, we believe that they can be useful for other researchers deal-
ing with active plasmonics. The content is divided into three parts. The first part
contains general information on plasmonic effects in metal structures, as well as
electronic and optical properties of semiconductor structures, acting as building
blocks of the devices of active plasmonics. The second part describes characteris-
tics of particular materials, both conducting and semiconducting, which can be of
value for the design of hybrid plasmonic structures. Thus, these two parts serve
as a kind of handbook useful for many readers. They are expected to provide a
concise but consistent description of the basic theoretical approaches and neces-
sary material data, reducing the main text, where possible, to a conceptual level.
The third part describes the existing theoretical approaches to the description of
light—matter coupling in metal-semiconductor structures and presents proof-of-
concept experimental observations. This part is essentially devoted to the practical
applications of active plasmonics, both implemented and proposed.

While the book is generally aimed at experienced researchers and graduate
students, some parts of it should be readable and useful for a wider audience, in-
cluding senior undergraduate students, who are interested in the area of modern
nanophotonics.

Alexey Toropov and Tatiana Shubina
Saint Petersburg, Russia
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Introduction

1.1 Milestones of plasmonics
1.2 Scope of this book 8

Plasmonics has a long history as a part of technology. The Lycurgus cup and
amazing stained glass windows: all these art treasures rely on plasmonic proper-
ties of tiny metallic particles (a detail of a window in the Canterbury Cathedral
is shown as the headpiece). On the other hand, the scientific background of plas-
monics was established only during the last century, based on acquirements of
classical and afterwards quantum electrodynamics. Moreover, plasmonics for the
purposes of nanophotonics has a very recent history. Not accidentally, it coincides
in time with the development of nanotechnology and nanometrology. Thus, we are
dealing with a dynamically developing branch of modern physics, possessing rich
history.

Plasmonic Effects in Metal-Semiconductor Nanostructures. Alexey A. Toropov and Tatiana V. Shubina.
© Alexey A. Toropov and Tatiana V. Shubina 2015, Published in 2015 by Oxford University Press.



2 Introduction

1.1 Milestones of plasmonics

At the time of emerging radio communication, Zenneck (1907) and Sommerfeld
(1909) obtained the particular solution of the Maxwell equations for exponen-
tially decaying electromagnetic waves propagating along a boundary between
two media, initially earth and air. Later, it was recognized that this solution
is relevant to surface plasmons (SPs) excited at a metal—dielectric interface in
plasmonic structures. Also, vice versa, the theory developed by Mie (1908) to
describe the scattering and absorption of an electromagnetic field by spherical
metallic particles has been applied to many natural objects—clouds, mist, and
interstellar dust. Further, the mysterious Wood’s anomalies (Wood 1902) in light
reflection from a metal diffraction grating have been explained by Fano (1941) in
terms of the interference of impinging light with the plasmons. Pines and Bohm
(1952) considered the energy loss, observed when bombarding metals by an
electron beam, as appearing due to the interaction with plasmons. Based on this
suggestion, Ritchie (1957) proposed SPs in a thin metal foil, for which energy
dispersion is dependent on the foil thickness. This model was developed by Stern
(1967) to describe the behaviour of two-dimensional (2D) SPs observed in thin
conducting films. All these developments resulted in development of the concept
of surface plasmon polaritons (SPPs).

Probably, plasmonics would be no more than a part of classical electrodynam-
ics but for the discovery of the surface enhanced Raman scattering (SERS) by
Fleischmann et al. (1974). The researchers demonstrated that vibration modes
in molecules absorbed on a silver surface can be enhanced up to 10°-10° times.
Such strong amplification of optical processes had not been known before. Al-
though many details in SERS were not clear and the contribution of chemical
enhancement can be hardly excluded, the resonant character of the enhancement
was doubtless (Moskovits 1985). The enhancement arises when the frequency
of the illuminating light coincides with the resonance frequency of localized
surface plasmons (LLSPs) in small particles forming the rough metal surface.
Different related phenomena, such as the surface-enhanced second-harmonic
generation, four-wave mixing, absorption, and emission, have exhibited similar
resonant enhancement. They are evidence of the amazing ability of SPs to con-
centrate electromagnetic fields at the sub-wavelength scale in the close vicinity of a
metal surface. In particular, they promote resolution beyond the diffraction limit,
realized in the innovative plasmonic microscope (Rothenhiusler and Knoll 1988).

In this book, we focus on the performance of plasmonics related to
semiconductor—metal nanostructures. Two situations represent particular interest
for our consideration, namely: (i) a source of radiation near a metal surface sup-
porting SPs; and (ii) conversion of plasmonic excitations themselves into light,
which determines the functioning of plasmonic structures as optical antennas.
As shown below, both have been intensively studied previously.

When a radiating dipole is situated near a metal surface, the lifetime of spon-
taneous emission is decreased (Purcell 1946) and the spectrum of spontaneous



