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Preface

What follows is very far from being a treatise on the variation method.
Rather it represents an attempt to bring together into a coherent whole those
aspects of the variation method as applied to bound states problems in quan-
tum mechanics which have been of especial interest to me. Hopefully the
results will be of some interest to others as well.

A fair appraisal of the contents of the book can be gained simply by in-
specting the table of contents. As will be gathered, most of the text is devoted
to generalities, general points of view, general theorems, etc. To balance this
to some extent, we do describe in detail, in Sections 6, 8, and 9, three standard
variational procedures which then serve in Sections 27—-30 and also here and
there in other sections as concrete examples to which we can apply the gen-
eral theorems. Also we give a number of references to papers in the literature
where other examples may be found.

Since, as will be seen, the level of discussion, both as regards physics and
mathematics, is fairly elementary (and certainly should be readily accessible
to anyone with two semesters of quantum mechanics), we have omitted many
steps, while at the same time making frequent use of phrases like “it is obvi-
ous that,” “it is easily shown,” or “one readily finds,” with the expectation
that the reader will be alerted by them to work out the omitted steps. Also,
at the ends of sections we have appended selections of problems, some of
them asking the reader more explicitly to work out details, others indicating
extensions and generalizations of results in the text.

Although my general interest in the variation method certainly predated
my arrival at the University of Wisconsin, the great intensification of that in-
terest in recent years owes much to the stimulation provided by my associa-
tion with Professor Joseph O. Hirschfelder, and with the Theoretical Chem-
istry Institute generally. In particular, in addition to acknowledging my great
debt to Professor Hirschfelder, I would like also to express my thanks to Pro-
fessors W. Byers Brown, P. R. Certain, and P. D. Robinson for many discus-
sions of these matters through the years. Also special thanks are due to my
wife, Jean Hoopes Epstein, who has assisted in every phase of the prepara-
tion of this manuscript. Finally thanks are due to the National Aeronautics
and Space Administration and the National Science Foundation which have
supported the Institute.
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Chapter | | General Theory of the Variation Method

1. Some Background

Principles of “least this” and “maximum that” have for a long time
fascinated scientists and philosophers alike.! Moreover, even principles of
“stationary this or that,” though they may have somewhat less philosoph-
ical appeal, nonetheless continue to interest scientists because on the one
hand they usually provide a very compact way of stating the mathematical
essentials of a theory, and on the other provide a useful avenue to the
development of new theories.

Thus it is not surprising that in his first paper on wave mechanics [3],
Schrédinger presented his equation in the form of a variation principle,
and only later [4] revealed some of the background which led to his writing
down of the equation in the first place.

An obvious reason for the philosophical fascination of minimal (or
maximal) principles is that they seem to make physical laws less arbitrary,
more rational, suggest a purpose, etc. Indeed, it is tempting to take a
variation principle quite literally and then imagine that the variations are
actually taking place; that at each moment or at each point, the system,
whatever it is, is sampling all sorts of possible behavior, with the actual
behavior then being selected on the basis that it will make the least change
in something, that is, it will make some quantity stationary. Moreover,
Feynman [5], following on some earlier work of Dirac, has shown that in
a very real sense quantum mechanics can be ‘“derived” from classical
mechanics by omitting the final selection processes and assuming that all
behavior, not just the classical one, is possible.

In a not dissimilar vein, Ruedenberg and co-workers [6] have argued
that one can get real insight into the nature of chemical binding by imagining
that as a molecule forms, it actually does, so to speak, try one wave function,

1 See, for example, Yourgrau and Mandelstam [1] and Born [2].
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2 I. General Theory of the Variation Method

then another, relaxing a bit here, tightening a bit there, before finding the
most suitable one.

Although these general theoretical and philosophical considerations con-
cerning variation principles are of great importance, probably of more
practical significance are the associated variation methods for approximat-
ing the solutions of actual physical problems. The use of such methods has
a long history in science,? and in particular it is not much of an exaggera-
tion to say that in applied quantum mechanics, most approximation pro-
cedures are either direct applications of the variation method or can prof-
itably be related to it in one way or another.

In this book, we will be concerned with the variation method for ap-
proximating the energy eigenvalues and energy eigenfunctions of a bound
quantum mechanical system. Thus we consider situations in which at least
the low lying energy levels are discrete, and we concentrate our attention
on these discrete levels. More particularly, our standard example will be
that of N electrons interacting with one another and with various fixed
nuclei via Coulomb interactions, and possibly also with external static
electric and magnetic fields. Thus the Hamiltonian for the system, including
various nuclear interactions as well, is

X (Ips + (/o)L @) 2
A Sty e ikl
N N F gg;
—_ Z DR, 1
sz>;l l'—l'tl Z>§;|1{a +Z ( ) ()
where we have used atomic units [mass of electron = —charge of electron

= (Planck’s constant)/2z = 1]. In Eq. (1), c is the velocity of light, & is
the vector potential, and @ is the scalar potential; the electric and magnetic
fields & and &5 are then given by

&= TV 2)

RB=V x 3)

Also, r, is the coordinate of the sth electron, p, is the associated momentum
operator, R, is the coordinate of the ath nucleus, and £ is its charge.
The Hamiltonian (1) is, of course, the Hamiltonian for a molecule in

the so-called “clamped nuclei approximation” with complete neglect of
all spin (electronic and nuclear) and relativistic effects. As such, it provides

? See, for example, Mikhlin [7], Courant [8], Finlayson [9], and Birkhoff [10].



1. Some Background 3

a conceptually simple but physically meaningful example to which we can
apply the results of our general considerations. Nevertheless, it should be
clear to the reader, without our making the point each time, that many of
our general conclusions are quite independent of the detailed form of H.
Also, although our language will be appropriate to the coordinate repre-
sentation, most results will be representation independent, holding equally
well in momentum space, for example, with appropriate interpretation of
the symbols.

Our general notation will be quite a standard one. The scalar product
of two wave functions v, and y, will be denoted by

(W1» o) 4)

with the ““integration,” for the N-electron example, being over both space
and spin. It has the standard properties:

(W15 w2) = (w2, w)*, (W1, apy) = a(py, v2), (o, ¥2) = a*(¥y, v2) (5)

where a is a number and the asterisk denotes complex conjugate. Also,
we will assume that

@ v)=0 (6)
implies that
p=0 (M

(that is, we will not worry about sets of measure zero). Finally, the state-
ment that an operator 6 is Hermitian means that

(p1, Opz) = (O, v2) ®)

In our discussions, we will have frequent use for matrix and vector
notation. A particular vector will usually be distinguished by a subscript
in parentheses; thus V(; with components V;, or Vi, and the scalar
product of two vectors will be denoted by

W(;)' Vip = Zz: W(lt)qu)l ©)

If this scalar product multiplies another vector X, we will, however, usually
write the result as (W(,- V(;)X rather than simply W,-V;X. Finally, as
usual, a Hermitian matrix is one for which

My = M}, (10)
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and which therefore has the property

V- MV = (MV)* Vi (11)

while a symmetric matrix is one for which

My = M; (12)

PROBLEMS

What is the numerical value of ¢ in atomic units?

If in atomic units & = 98 = 1, what are the field strengths in more
practical units? Are they large or small by laboratory standards?

Presumably you are familiar with the standard properties of Hermitian
operators and matrices and of their eigenfunctions and eigenvalues—
that they can be diagonalized by a unitary transformation, the orthog-
onality of the eigenfunctions, reality of the eigenvalues, etc. If not,
please consult almost any graduate level quantum mechanics text. Also,
you should be familiar with the fact that the average value of any
Hermitian operator is greater than or equal to its smallest eigenvalue.

A Hermitian matrix M is said to be positive definite if all its eigenvalues
are positive. Show that a necessary and sufficient condition for this is
that X+-MX > 0 for all X.

Show that a positive-definite Hermitian matrix always has an inverse
(which is also positive definite), and a positive square root.

2. The Variation Principle

Given any function y for which the requisite integrals exist (we will

refer to such functions as trial functions), we can calculate the real number

E = (y, Hy)/(y, ) )

Since E would be the average energy of the system if the system were in
the state described by the function y, we have that E cannot be less than
the smallest possible energy, that is, E cannot be smaller than the smallest
eigenvalue of H. /



2. The Variation Principle 5

To learn more, we consider another trial function " and 4, the difference
between y and y’; thus

py=9 +4 )
Then with the definition
E'= (v, HY)/®', v') 3)
one finds upon inserting (2) into (1) that

E'(y,y) + (v, HA) + (4, Hy') + (4, HA)

£ W v
or, since
W, v) + @, )+ A, ¢)+ 4, ) = (v, ) @)
we have
E— gy W H=END + (A4, (H = EW) + (A, (H= EN)

(v, »)

Finally, using the hermiticity of (H — E’), we rewrite this as

F=E (v, ») )
We will now draw several important conclusions from this result.
Result 1. Suppose that
(H—E)W =0 ©6)

that is, suppose that y" and E’ are an eigenfunction and the corresponding
eigenvalue of H. Then (5) becomes

A, (H — E"A)

E=F
+ (», »)

™

from which we see that E differs from E’ by terms which are of at least
second order in the difference between y and y’. Therefore if we think of
as being a continuously variable quantity, then it follows that the eigen-
values of H are stationary points of E as a functional of .



6 I. General Theory of the Variation Method

Result 2. We will now show that E has no other stationary points.
Thus suppose that E’ is a stationary point of E as a functional of y. Then
the first-order terms on the right hand side of (5) must vanish for all 4
and therefore the first-order terms in

(H—EW,4) + (4, (H— E")y)
must vanish for all 4. In particular this must be true for
A=a(H— EYW ®)
where « is a continuously variable number. Thus we must have
(2 + a*)(H — E'Yy', (H— E)) =0
which can be satisfied only if
(H—E)y =0

Therefore if E’ is a stationary point, then E' is an eigenvalue and the cor-
responding vy is an eigenfunction. The characterization of the eigenvalues
and eigenfunctions of H provided by Results 1 and 2 constitutes a state-
ment of the variation principle.

Result 3. Suppose now that E’ is the smallest eigenvalue of H. Then
(H — E’) has only nonnegative eigenvalues and thus its average value is
always nonnegative. In particular, then, this means that however large 4
may be, still

4,(H— EHYA4)>0

and hence from (7) we see, consistent with our initial observation, that the
smallest eigenvalue of H is not just a stationary point, it is the absolute
minimum of E as a functional of w. Conversely; E is always an upper bound
to the smallest eigenvalue.

On the other hand, if E’ is a higher eigenvalue, then by choosing 4 to
be a linear combination of the lower eigenfunctions (still higher eigen-
functions—and this can include continuum states if there are any), we can
evidently make (4, (H — E")A) less than (greater than) zero. Thus the
intermediate eigenvalues of H are only saddle points of E as a functional
of y, and even locally are neither maxima nor minima.

Result 4. That the smallest eigenvalue is the absolute minimum of E
is a very striking result. However, it does not in general serve to characterize
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the energies of the actual ground states of atoms or molecules since, because
of the requirements of the Pauli principle, these ground states are usually
not the lowest eigenstates of the appropriate Hamiltonians; for example,
the ground state of the lithium atom is (1s)?2s and not (Is)3.

Happily, however, there is a similar theorem which is applicable to
the physical ground states and to the various excited states as well: often
the eigenstates of H can be classified into types according to their sym-
metries or, more generally, according to the eigenvalues of ‘other operators
K which commute with H. If then E’ is the smallest eigenvalue of H for
states of a certain type (for example, for states satisfying the Pauli principle),
it follows that (H — E’) will have a nonnegative expectation value with
respect to functions of that type because such functions will be orthogonal
to all eigenfunctions of H associated with smaller eigenvalues.

If now we confine attention to y of that same type, then 4 =y — o’
will also be of that type and therefore however large A4 may be, still

A, (H—EN) =0

Thus the smallest eigenvalue of H for states of a given type is the absolute
minimum of E as a functional of trial functions of that type, and conversely,
if one uses only trial functions of that type, then E is always an upper bound
to that lowest eigenvalue.

Result 5. We now observe that if H commutes with K, it will follow
that if ' is of a definite type, then the 4, which played the decisive role
in Result 2, namely (H — E')y’, will also be of that type. Thus we may
generalize the result found there as follows: If H commutes with K, if ¢’
is of a certain type, and if E’ is a stationary point with respect to all varia-
tions of that type, then E’ is an eigenvalue and ¢’ is an eigenfunction. In
summary, combining this last result with Result 1, the variation principle
applies separately to the eigenfunctions and eigenvalues of each type.

Result 6. A further generalization of Result 4 is evidently the following.
Let E’ be an arbitrary eigenvalue of H and confine attention to y which
are orthogonal to all eigenfunctions of H whose associated eigenvalues are
less than E’. Then we will have

A, (H— E"NA) >0

and thus an arbitrary eigenvalue of H is an absolute minimum of E as a

Sfunctional of trial functions orthogonal to eigenfunctions associated with
smaller eigenvalues.
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Before concluding this section, it is appropriate to make some remarks
about the existence of the integrals in (1) and hence about the functions
which can be trial functions. For one thing, of course, as befits a bound
state function, they must be normalizable so that the denominator exists.
Further, if we are working in configuration space, then, for the usual
Hamiltonians of atomic and molecular physics, for example for (1-1), the
existence of (y, Hy) requires that y be twice differentiable. However, if
one uses the formally equivalent (Vy, -Vy) instead of (p, —F%p) it can
be shown [11] that the results which we have found in this section continue
to hold even if p is only once differentiable.? Further, the former form is
usually much more convenient to deal with numerically. Also, it was in
this form that Schrodinger [3] gave his original variational formulation
of quantum mechanics, and finally, as Schrédinger has emphasized [13],
it is an especially useful one for transforming the Schrédinger equation
from Cartesian coordinates to arbitrary coordinates (it is easier to trans-
form Py than to transform P72yp). Nevertheless, in spite of all these virtues
of Wy, -Vy), we will continue to use the expression (1) because it is
much easier to deal with formally, and because in most applications the y
are twice differentiable.

PROBLEMS

1. If y and o’ are physically distinct (for example, orthogonal to one
another), can E = E’ in (7)?

2. It may seem odd that out of all possible A’s the special choice (8)
already sufficed to derive the general result. However, show that the
first-order contributions of any physically distinct additions to this 4
would vanish identically.

3. Devise a projection operator (presumably you are familiar with the
general notion of projection operators) which is such that if one knows
the lower eigenvalues of H, then one can produce trial functions which are
orthogonal to the lower eigenfunctions. (See, for example, Léwdin [14].)

3. The Variation Method: Introduction

The results of the previous section are, aside from their theoretical interest,
of great practical importance because they suggest a soundly based method

3 For variation principles which allow y to be discontinuous, see, for example, Rudge [12].



