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Factor Analysis

Factor analysis is a technique for representing the
relationships among a set of variables in terms of a
smaller number of underlying hypothetical variables.
It aims to describe the variation among a set of
measures in terms of more basic explanatory con-
structs, and thus to provide a simpler and more easily
grasped framework for understanding the network
of relationships among those measures. Correlations
might be computed, for example, among the scores
of a group of students on measures of addition,
subtraction, multiplication, division, vocabulary, and
reading comprehension. A factor analysis of these
correlations might show that the relationships among
the tests could be almost completely explained in
terms of two underlying variables, which might well
be interpreted as computational ability and verbal
ability.

1. Early Development of Factor Analysis

Although the technique of factor analysis is now
applied in a wide variety of disciplines, it originated
in the field of psychology. Towards the end of the
nineteenth century a number of psychologists turned
their attention to experimental studies of intelligence
and intellectual abilities. Spearman collected data to
test his theory that mental activity could be explained
in terms of a single central intellective function,
“intelligence™. Finding high correlations between
estimates of intelligence and students’ scores on tests
of weight, light, and pitch discrimination, he con-
cluded that

all branches of intellectual activity have in common one

fundamental function (or group of functions). whereas

the ining or specific el of the activity seem

in every case to be wholly different from that in all

others. (Spearman 1904)

Subsequently, in his two-factor theory, the fun-
damental function was described as a general factor,
“2", and the element specific to a particular activity
as its specific factor, “s".

Spearman had noted that his matrices of corre-
lations among intellectual abilities could be arranged
hierarchically, showing a progressive decrease in
value from left to right and from the upper to the
lower rows of the table. He recognized that this
would be the expected pattern of correlations if all
mental processes reflected the operation of a single
central intellective function, which operated at dif-
ferent levels of complexity. To test whether a set of
correlations he had obtained among six variables

conformed to this pattern. for instance. he computed
the tetrad differences among the correlations. for
example (ryars — rar). Finding that they were
approximately zero, he confirmed the hypothesis that
the correlations could be explained by one general
factor.

The two-factor theory was challenged by Thomson
and other psychologists on both theoretical and
empirical grounds. Working with larger batteries of
tests and larger numbers of cases, Burt identified
verbal, numerical, and practical group factors in
school subjects in addition to a general factor; a
group factor is one which is represented only in
certain similar types of tests but not in others. Spear-
man later admitted the necessity of group factors,
and British factorists adopted a factor model which
incorporated both a general factor and group factors.

Hierarchical theories of mental structure had little
appeal for American psychologists. They preferred
a multiple-factor approach in which several factors
were extracted directly from a correlation matrix.
without any initial assumption about the need for a
general factor. In the early 19305, Kelley and Hotell-
ing sought a unique and exact mathematical solution
to the problem of identifving the underlving factors
in a correlation matrix, and developed the general
method of principal components analysis put forward
earlier by Karl Pearson. This method extracts suc-
cessive uncorrelated components which account for
as much of the variation among the scores of students
on a set of variables as is possible at each stage.

Thurstone, the major American contributor to
the development of factor analysis, noted that the
addition of further tests to a battery could affect
the factors identified by the principal components
approach. He sought a method of analysis which
would lead to the discovery of psvchologically mean-
ingful factors which were invariant, that is, sup-
E;rtin; the same interpretation, over different test

tteries.

In 1931, Thurstone accelerated the developmuent
of factor analysis by noting that Spearman’s tetrad
difference of rysray — rasris = 0 was the equivalent of
setting a second order minor or determinant to be
equal to zero. In algebraic form.

=0

He reasoned that “if the second-order minors must
vanish in order to establish a single common factor,
then must the third-order minors vanish in order to
establish two common factors. and so on™ ( Thurstone
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1947). This allowed him to use matrix algebra pro-
cedures to express the problem of determining the
number of factors needed 1o account for an observed
correlation matrix. He formulated the problem in
terms of the fundamental factor theorem FF' =R,
where R was the original correlation matrix and F
was the factor matrix to be identified. F would consist
of a matrix of coefficients or “loadings” of the original
tests or variables on the “factors”, and would usually
be a rectangular matrix of lower rank than R. To
avoid the then prohibitive calculations of the prin-
cipal components solution to this equation, Thur-
stone developed the centroid method of analysis,
which although quite tedious, was widely used until
the 1950s, when advances in computer technology
made other methods feasible.

Thurstone was also responsible for distinguishing
two separate phases in the determination of factors—
factor extraction and factor rotation. He recognized
that the initial extraction of factors by the centroid
method or by variants of the principal comp

latedness or orthogonality of factors should not be
imposed on the data. Application of the simple struc-
ture criterion would reveal whether the data could
be represented by an orthogonal axis system. In most
cases, however, the simple structure solution would
require an oblique rotation of the initial axes, in
which the angles between the rotated axes could be
smaller or larger than a right angle. The factors
emerging from an oblique rotation therefore tended
to be themselves correlated. If the factors were cor-
related, the correlations among the factors could be
further analysed to yield second-order or higher
order factors, which to the extent that they were
represented in all tests in a battery, could be regarded
as analogous to a general factor.

The most significant developments during this
early period of factor analysis were Spearman’s con-
ceptualization of the two-factor theory, its sub-
sequent extension by British psychologists to a gen-
eral plus group factor model, and a number of crucial
contributions from L. L. Thurstone—his generaliza-

method merely provided an arbitrary orthogonal set
of reference axes—a set of axes at right angles to
each other in two-di ional, three-di ional

or higher dimensional space depending upon the
number of factors extracted—to represent the corre-
lations among the tests or the relationships among
the test vectors, and that any particular set of axes
was only one of a very large number which would
represent the correlations equally well. He claimed
that the factor loadings determined at the factor
extraction stage had no psychological meaning until
they were rotated in the common factor space. Start-
ing from the psychological assumption that there
are some mental functions not involved in every
intellectual task, Thurstone developed the criterfon
of simple structure to locate new positions for the
reference axes. This required that the axes be placed
s0 that each test would have significant loadings on
only one or two factors and near-zero loadings on
the remaining factors, and so that on each factor, a
majority of the tests would have near-zero loadings.
Unlike the Britsh factorists, he made no initial
assumption about the need for a general factor, but
sought to determine “how many factors are indicated
by the correlations without restriction as to whether
they are general or group factors” (Thurstone 1947).
It was Icﬁ to the configuration of the test vectors to
determine whether a general factor was needed in
addition to other factors to explain the correlations
among the tests.

Factor schools differed on the question of accept-
able types of rotation. Most of the British factorists
and a few of the American factorists insisted on
«ihogonal rotations; while a given axis could be
rulated through any angle, the angle between that
wais and other axes should remain at %0°. The factors
therefore represented unrelated constructs. Thur-
stone, however, claimed that the restriction of unre-
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tion of the two-factor notion to a muluple factor
analysis model, his recognition of the need to rotate
initially-extracted factors to arrive at scientifically
interpretable results, and his development of the
concept of oblique factors and of criteria for identify-
ing factors. While the basic techniques of factor
analysis were well-established by the 1950s, many
problems remained. The initial extraction of factors
still involved approximate methods, as did the esti-
mation of test communalities, that is, that part of the
variance of a test which it has in common with other
tests in a battery. Criteria for determining the num-
ber of factors needed to explain the correlations were
still approximate, and there was a substantial element
of subjectivity in the graphical rotational procedures
employed by factor analysts. Over the ensuing years,
many of these problems have been resolved or con-
siderably refined, with theoretical advances being
greatly facilitated by advances in computer
technology.

2. The Basic Factor Model

The basic factor model assumes that a score on a
variable can be expressed as a linear combination or
as a weighted sum of scores on factors underlying
performance in that variable. If three hypothetical
factors F,, F3, F; were assumed to underlie per-
formance in test j, scores (expressed in standardized
form, that is with a mean of zero and a standard
deviation of 1) on test j could be represented by the
equation

z; = apF\, + apF; + asF; + U, (1)
where the a coefficients represent the loadings of test
j on the respective common factors; Fy. Fy, and Fy

represent standard scores on these factors; and U,
represents scores on a factor unique to test j, includ-
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ing error of measurement. The standard scores of
two persons on test /. for instance, might be expressed
as follows:

Person 1: z; = auFyy + apFy + apfs + Uy (2)
Person 2: zp = ayFiy + apFn + apFu + Uz (3)

Thus the loadings of test j on any one factor are the
same for all persons, but the scores on a factor,
whether common or unique, differ among persons.
Continuing with the above example, the standard
score of Person 1 on test k would be given by

i = anFiy + apFy + auFy + Uy 4

The product of the z scores of Person 1 on tests j
and k. that is, z; z; can be found by multiplying the
expressions on the right-hand side of Eqns. (2) and
(4). Summing the product of the standard scores on
tests j and k over all N persons in the sample. and
dividing the result by N gives

N
1
N [;I zn‘zkr) = gy + apdy + dpay (5)

since the scores on the three factors are standard
scores and the sum of the squares of standard scores
is equal to N, and since product terms involving
scores on different factors, whether common or
unique, are equal to zero, as the factors are by
definition uncorrelated.

The expression on the left-hand side of Eqn. (5)
defines the correlation between tests j and &, so that

Fix = Gpdyy + Gl + Qe (6)

That is, the correlation between any pair of variables
can be expressed as the sum of the product of the
loadings of those variables on each of the common
factors. Using the vector terminology of matrix
algebra, Eqn. (6) can be written as

-Uu
rie = [ay an ap) | @i (7
[]%]

Generalizing Eqn. (7) to represent the intercorre-
lations among 1 variables in terms of the three factors
gives

Test
Test 1 2 i i k ; n
1 m' on: LTI T Fin
-3 I : &
Folm . L Fin
k fa fir ry i Tikn
n L Tnj  Fak Fon

Factors

TestF, F» F
1 ay  dyx dycfjdn . g dyy . dyy
2 i : A a: . 3 ap dg . o
; 5 2 ayy . n Gy A . 1

] a  dp ap

k ey e i
ndy Gy Gy (8)

which is conveniently represented by the matrix
equation

R.=FF (&2}
where R, is the matrix of correlations among the tests
(which differs from the data-generated matrix R in
that the asterisked diagonal entries consist of the
correlation shared by the respective test with other
tests in the battery and is less than unity), F is the
matrix of test loadings on ihe factors, and F' is the
transpose of the latter matrix. In Eqn. (8). ri of Eqn.
(7) appears as the product of the jih row of the F
matrix and the kth column of the F' matrix. Equation
(%) indicates that a given F matrix would yield a
unique R, matrix, but that a given R, matrix could
be analysed to yield many different factor matrices.

Equation (9) represents the common factor model.
The complete factor model also incorporates the
variance (§) unique to each test. thus:

R=R.+d=FF + % (10)

where R is thie correlation matrix with unities in the
diagonal cells, and o is the diagonal matrix

w0 0 . 0
fammvsae i __. 0
0 0 . w . 0
0 0 0 i

Each of the unique test variances (yy) is regarded as
consisting of a reliable component (specific variance.
and an unreliable component (error variance,
*#). The common factor variance or communality for
each test is represented by the symbol /7. Thus in
the factor model the vanance of a test is uprom‘\i
as the sum of several components:

of = 1*= (&} +tax+...+al)+ (s + el )(11)
= hy + ¥

The reliahility coefficient {r,) of a test is the sum of
the n:iziable components of variance, (h5 +57) or
(1 e

It 'was assumed in the derivation of Eqn. (5) that
the factors in the F matrix were uncorrelated, and
this assumption is also implicit in Eqn. (10). Regard-
ing this assumption as unnecessarily restrictive, Thur-
stone advocated the acceptance of oblque or corre-
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lated factors if warranted by the configuration of
the test vectors. When Egn. (10) is expanded to
accommodate correlated factors, the basic factor
eguation becomes

R=R +=FdF + ¢ (12)
where ¢ represents the matrix of correlations among
the factors.

In the present example,

1 Tner AR
¢ =|rpn 01 TEFs (13)
ran tRR 1

If the data can be satisfactorily explained by a set of
uncorrelated factors, then ¢ reduces to an identity
matrix,

[I 0 0
I=j0 1 0
L[} 01

and Egn. (12) reduces to Eqgn. (10).

3. Exploratory vs. Confirmatory Factor Analysis

Usuaily. the first objective in carrying out a factor
analysis of a correlation or covariance matrix is to
arrive at an F matrix of the following form:

Factors
Variables [ n I op T m
_Tf-‘-"l 1 dy @y Auy 1 @ 1 A
Test 2 fy @y Ay 8 i O
: ) : i 3 e i 14)
Test j ay @y g @ 1 G
Test n Gy Ay Guyr b Gnp b Om

This is the matrix of the loadings (a,,) of a set of tests
or other variables on a set of m ungerlying common
factors, m=n. It is also referred to as a factor
structure matrix, representing the correlations of
each of the tests with each of the factors. As peinted
outearlicr, itis only one of a large number of matrices
which would satisfy the relationship expressed in
Egn. (10}, and some rotation of the axes represented
by the factors would be required to arrive at a mean-
ingful representation of the original data.

Both i its early development and in the large
majority of its present-day applications, factor analy-
sis has been used in an exploratory manner, to
explore the underlying dimensions of a set of data
While there has been some indulgence in blind explo-
ration among the uninitiated, in the sense of seeing
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what factors emerge from any ill-assorted set of vari-
ables, the use of factor analysis to explore the dimen-
sions of an educational or psychological or socio-
logical domain of interest has mostly been in the
context of well-designed studies in which hypotheses
have been carefully formulated and variables have
been carefully selected. Exploratory factor analysis,
however, does not place specific restrictions on the
number of factors which should appear in the F
matrix or the subsequent rotated matrix, or on
whether particular entries in the factor matrices or
factor correlation matrices should be zero or
nonzero; it is an unrestricted factor model.

The idea of testing the hypothesis that the relation-
ships among a set of variables might be accounted
for in terms of a restricted factor model emerged in
the mid-1950s, and following the work of such
authors as Howe, Anderson and Rubin, Lawley,
Jéreskog and Gruvaeus, had led to the development
of procedures for confirmatory factor analysis. In
contrast with exploratory factor analysis, confirma-
tory factor analysis sets out to test whether the origi-
nal correlation or covariance matrix can be repre-
sented by an underlying factor matrix with a specific
number of factors andfor specified zero or nonzero
entries in factor matrices and/or factor correlation
matrices, Instead of extracting an initial arbitrary F
matrix and subsequently rotating that matrix, con-
firmatory factor analysis tests the specific hypothesis
that the correlation or covariance matrix can be
explained by an F matrix of a specified form, for
example by a matrix involving exactly three factors
with a specified pattern of loadings as in {A) and of
factor correlations as in (B) below:

(A) (B)

1 11 111 1 1 111
Test 1 x x 0 I 1 x x
Test2 " x x 0 1 x 1 0
Test 3 x x 0 111 x 0 1
Test4 x i 0
Test 5 x (1 x
Test 6 x 0 i
Test7 0 0 X
Test 8 0 1] X

Maximum likelihood methods are used to estimate
the nonzero (x) elements in these matrices, given
the original correlations or covariances among the
variables. If a goodness of fit test then shows that
the observed matrices do not deviate sigmificantly
(p < 0.05) from the hypothesized factor solutions,
the specific theoretical hypothesis is confirmed.

4. Initial Exiraction of Factors

Many approaches to the determination of the initial
F matrix have been developed since Thurstone pro-



posed his centroid method of analysis, and many
earlier methods have been superseded as a result of
the development of computers. One set of reference
axes and its associated F matrix have the important
property that they enable a set of correlated variables
to be described in terms of a set of orthogonal
(uncorrelated) axes which account for the maximum
amount of varjance remaining among the variables
as each axis in the new set is determined. The axes
in this set are called the principal components of the
original correlation matrix.

quation (15) presents a correlation matrix for
three tests: Vocabulary (V), Comprehension (C).
Arithmetic problems (4).

V) (©) (A)
R=(V)[1.0 0.6 02
(Cyj06 1.0 04
(A)fo2 04 10

(15)

This matrix can be represented by an ellipsoid of
points in three-dimensional space, defined by three
orthogonal axes X, Y, and Z. The ellipsoid would
take the shape of an elongated football oriented from
one corner of a room at floor level (the origin of
the three-dimensional space) upwards towards the
ceiling and outwards to the opposite walls. The first
principal axis of the correlation matrix would be the
major axis of the football; the second principal axis
would pass through the centroid of the set of points
and would be perpendicular to the first principal axis:
the third principal axis would be perpendicular to
both the first and second principal axes, representing
the length of the line across the football if it had been,
flattened in one of its shorter dimensions. These
three axes are called the principal components of the
correlation matrix. The variances of the principal
components are the latent roots or eigenvalues of R
which are determined by solving the characteristic
equation

R-M =0 (16)

These eigenvalues show the variance of the points

along the first, second, and third principal axes

of the football to be 1.823. (0.817. and 0.360
respectively.

(1) (2) 3

English French Italian

R. = (1) [(0.59) .63 0.65

(2) | 0.63 (0.41) 0.45

(3) | 065 0.45 (0.44)

(4) | 0.31 0.27 0.10

(5) L0.20 0.18 .05

The orientation of the principal axes with respect
to the original axes is given by a set of eigenvectors
corresponding to each eigenvalue: these are the
direction cosines of each principal axis. By multi-
plving the elements of the eigenvectors by the
square root of the corresponding eigenvalues, the
loadings of the tests on the new axes would be found
to be

Ist 2nd 3rd
principal principal principal
component  component  component ;g

Vv [ 0.800 -0.475 0.366
C | 0.888 =0.110 —0.446
A L0.627 0.762 0.164
Principal component analysis describes  the

relationships among the original n variables in terms
of n new uncorrelated factors, rather than in terms
of a reduced number of factors. Principal axes can
be found, however, for the matrix R, [see Egn.
(9)]. in which the correlations in the diagonal
cells represent the variance which each variable
has in common with other variables in the set, not
including the unique variance. This application of
the principal axes method is referred to as principal
factor analysis.

The principal factor method will be illustrated with
the aid of the fictitious matrix in Egn. (18). which is
based on the correlations among the scores of 200
15-year-old secondary-school students on examina-
tions in English. French, Italian, physics, and chem-
istry. but in which the diagonal values of unity have
been replaced by the communality, A7, [se¢ Eqn.
(11)] of each variable. The communality is that part
of the variance of each variable which it holds in
common with one or more other variables in the
set, or that part of the variable's self-correlation
attributable to common factor variance in the set of
variables. The squared multiple correlation of each
variable with all of the other variables in the set is
now usually accepted as the communality estimate,
and has replaced the original values of unity in the
diagonal cells of the matrix in Eqn. (18), which is
therefore designated as R, .

(4) (3)
Physics  Chemistry
0.31 0.20
0.27 0.18 (18)
0.10 0.05
(0.36) 0.55
(.55 (0.31)
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The principal factors for R, can be determined by
finding the eigenvalues and eigenvectors of the above
matrix. As the communality estimates are approxi-
mations, however, it is common practice to recom-
pute them from the loadings determined for the
principal factors, and to iterate this process until the
communality estimates are stabilized. The iterated
principal axis factor solution for the R, matrix in Egn.
(18) is

Variables ()

1 11 il
F = English 1.880 -0.239 —-0.009
French 0.684 -0.129 -0.204
Italian 0.642  —0.372 0.190
Physics 0.506 0.588  -0.021
Chemistry 0.398 0.604 0.091
Eigenvalues 2.069 0.923 0.087

In the F matrix in Eqn. (19), an n x m matrix, the

m
lities are ob d by El aj,
v

values of the cc

for each test, and the eigenvalues by EI a}, for each
.-

factor. It will be seen that the eigenvalues decrease
in size from the first to later factors. The question
arises as to how many of these factors are worth
retaining for subsequent processing. If the original
set of correlations or covariances can in fact be
expressed in terms of a smaller number of underlying
factors, the determination of the rank of the corre-
lation matrix with appropriately chosen communality
values would indicate the minimum number of factors
needed to describe the original set of relationships
among variables. The rank of a matrix is defined as
the order of the highest nonvanishing determinant,
or geome-rically, as the minimum number of linearly
independent di ions or vectors needed to expl
the data. If a matrix is of rank 2. the re}anonshlps
among a set of variables can be expressed in two-
dimensional space; if it is of rank 3, a three-dimen-
sional space is required, and so on. With correlation
or covariance matrices based on observed data in the
social sciences, however, a clear-cut determination
of the rank of a matrix is seldom possible. Apart from
the problem of estimating communalities, observed
data are subject to fluctuations due to the sampling
of individuals and errors of measurement in the vari-
ables being analysed.

The number of factors of the original R matrix
with eigenvalues greater than or equal to 1 is often
taken as an indication of the number of initially
extracted factors to be retained for further process-
ing: such factors account for at least the equivalent
of the total variance of any of the variables being
analysed. In the R matrix on which Eqn. (18) is
based. two eigenvalues are greater than 1. While this
criterion is a useful starting point, it may under-
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estimate the number of factors required to account
for the correlational data, and may well be sup-
plemented by other criteria. In Cattell’s Scree test
(1966), the eigenvalues are graphed from highest
to lowest, and factors are accepted only for those
eigenvalues above the point on the graph where the
eigenvalues level off. Subjective criteria, such as
discarding factors which account for less than 3

Factors (p) =

v ¥ h-
=0.069 -0.017 0.837

0.068 0.005 0.531

0.030 0.013 0.587 (19)
-0.064 0.016 0.606

0.068 -0.013 0.536

0.019 0.001

percent, say, of the total variance, on the grounds
of their lack of practical importance, may also be
considered. A further useful guide is the number
of factors built into a well-designed factor analytic
study.

The principal factor method is the most commonly
used of the least squares approaches to the estimation
of the initial F matrix; it is described as a least squares
approach, since extracting the maximum variance at
each stage is equivalent to minimizing the unex-
plained variance or residual correlations between the
variables. An F matrix can also be generated directly
from an iterative least squares solution involving
the minimization of the residual correlations for an
hypothesized number of factors; the Minres method
(Harman 1976) is a variant of this approach.

Increasing use is being made of the method of
maximum likelihood to determine the initial factor
matrix, F. The theoretical basis of the method had
been given by Lawley in 1940, but its application did
not become feasible until the development of new
methods of maximum likelihood factor analysis
(Joreskog 1966, 1969, Joreskog and Lawley 1968).
The method is more efficient than other procedures,
in the sense that the estimated factor loadings have
a smaller sampling variance. It also provides a large
sample test of significance for assessing the adequacy
of different hypotheses about the number of common
factors needed to account for the observed corre-
lation or covariance matrix.

Under the principle of maximum likelihood, the
parameter value(s) are sought which maximize the
likelihood of a sample result. In its application to
factor analysis, the parameter factor matrix F is esti-
mated which would have the greatest likelihood,
under a given hypothesis about the number of com-
mon factors, of generadrg the observed correlation
or covariance matrix. This involves, in the case of
uncorrelated factors, the minimization of a function
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G(F, W) where F represents the matrix of factor
loadings, and W the diagonal matrix of unique vari-
ances. When the maximum likelihood estimates of F
and @ have been determined, the hypothesis that the
n-variable observed matrix can be accounted for by
the designated number of common factors (k) can
be tested for moderately large N through the x*
statistic with #(n — k)* — (n + k)] degrees of
freedom.

Application of the maximum likelihood factor
analysis procedure to the correlation matrix in Eqn.
(18) with unities in the diagonal cells showed that one
factor was insufficient to account for the correlations
(x*=69.487, d.f. =5, p =0.000). Maximum like-
lihood loadings for an F matrix were then estimated
on the assumption that the R matrix could be
accounted for by two factors. This F matrix is

Factor
Variables (j) 1 1
F = English 0.934 -0.136
French 0.670 -0.033
Italian 0.657 -—0.257 (20)
Physics 0.440  0.739
Chemistry L0.297  0.567

Eigenvalues 2.037  0.953

The probability that the observed correlation matrix
R could have been generated from this F matrix is
very high, namely 0.998 ( x* = 0). The hypothesis that
the observed correlation matrix can be accounted
for by two underlying factors is therefore accepted.
Following Jéreskog, the convention with empirically
derived data is to accept the hypothesized number of
factors as soon as the probability that the observed
correlation matrix can be accounted for by that num-
ber of factors exceeds 0.10.

The significance test criterion in the maximum
likelihood method tends to overestimate the number
of factors when the sample size is large, and can be
supplemented by other indices. The appearance of
singlet factors, on which only one varigble has a
substantial loading, may also indicate that too many
factors have been extracted. Comparison of the two-
dimensional plots based on Egn. (20) and the first
two columns of the matrix in Eqn. (19) shows that
the configurations from the maximum likelihood and
principal factor solutions are quite similar.

Other approaches to the initial extraction of factors
include the canonical factoring procedure, the Alpha
factoring procedure, and image factoring. These
approaches are available as options in computer
packages such as spss and sas.

In matrices with well-defined groupings of vari-
ables, as in the 5 % 5 correlation matrix in Eqgn.
(18), the various methods for the initial extraction of
factors tend to identify the same factors even though
factor loadings may differ from one solution to

another. Most researchers will find that either the
principal factor or maximum likelihood procedures
will meet their needs, but it is often instructive to
obtain both solutions.

5. Rotation of Factors

As outlined in Sect. 1, Thurstone argued that the
initial factors needed to be rotated within the com-
mon factor space to arrive at a psychologically mean-
ingful solution. He evolved the concept of simple
structure to guide such rotations. As the principles
of order implicit in simple structure are germane
to a range of disciplines, the rotation of factors in
exploratory factor analysis has continued to rely on
this general concept.

In searching for new positions to which the original
arbitrary orthogonal factor axes should be rotated to
give substantive meaning to the factors, the investi-
gator can choose to undertake an orthogonal or an
oblique rotation. In the former case, the angles
between all of the new factor axes remain at 90°, and
the factors remain uncorrelated. In the latter case,
the angles between the new axes can be smaller or
larger than 90°, with the result that rotated factors
may themselves be correlated. The difference
between the two types of rotation is illustrated in
Fig. 1 for the five-variable correlation problem in

(al (b}

Figure 1
Orthogonal (a) and obligue (b) rotations of initial
reference axes in Egn. (21)

Eqn. (18), using as the initial factor plots the factor
loadings from a two-factor principal factor solution
for this matrix, since there were two eigenvalues
greater than unity in the original R matrix. The
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principal factor matrix in this case is
¢

1 1
F = English 0.905 -0.267
French 0.659 -0.128
Italian 0.615 —0.349 (21)
Physics 0.523  0.616
Chemistry 0.389  0.562

These loadings are plotted against the original factor
axes | and 11. The new positions of the axes after an
orthogonal rotation are shown as I' and II" in Fig.
I(a). Figure 1(b) gives the new positions of the axes,
I* and I1*, after an oblique rotation.

In Fig. 1{a), the axes have been rotated ciockwise
“through an angle of approximately 30°. Their place-
ment could be subjectively determined, keeping in
mind the need to have some variables with zero or
near-zero loadings on each factor. The loadings of
the variables on the new axes can be found from
the formula FT = B, where T is the transformation

matrix and B is the rotated factor matrix. In this

particular rotation,

r

T=1 [cos{--29°45’) —sin(—29'°45’)]
11 Lsin(—29°45") cos(—29°45")
I’ 18
= 0.877 0.481 (22)
i 1-0431 0.877
I’ 1
B = English -0.92 0.20
French 0.64 0.20
Italian 071 -0.01 w5
Physics 0:16 0.79
Chemistry 0.07 0.68

The factor coefficients or factor loadings in Eqn. (23)

will have high loadings on one factor and zero or
near-zero loadings on the other. Factor 1 has been
rotated clockwise through 21°27 to the new position
1*, and Factor II through 34°28' to the new position
I1*. Since the angle of 77° between the two new axes
is not a right angle, the rotation is oblique, The
orthogonal projection of the end-points of the test
vectors on the new axis system is given by FA=8§
where

b I
A= I 1cos(-21°27") cos 55°32'
i1 [sin (=21°27")  sin 55°32'

is the matrix of direction cosines of the new axes with
respect to the original axes. In the present example.

I 1 I* -
English 0.905 -0.267° [ 0.9307 0.5659
French 0.659  —0.128 ||-0.3657 0.8245
ltalian 0.615 -0.349
Physics 0.523 0.616
Chenistry 0.389 0.562
I* n*

(24)

ooooe
mRSRE
[—]
=
(=21

0.68

"The matrix on the right-hand side of Eqn. (24} is
the factor structure matrix, S, which represents the
correlations of the tests with the factors. The corre-
lation between the two rotated factors is given by the
off-diagonal element in

va o | 1.000 0.225
M AL [0.225 1.000]

which represents a moderate degree of correlation,
In rep ing the scores of persons in terms of a

could be read dnectly from Fig. 1(a) by ing
the orthogonal projections of the test points on axes
I' and II' respectively. This matrix of orthogonal
projections of the test points on the new axes is
known as the factor structure matrix; the entries
represent the correlations between the test vectors
and the factors. The matrix of coordinates of the test
points on the new axes, however, defines the factor
pattern matrix; this is the matrix of coefficients which
would be needed to estimate the standard scores of
each person on the original variables, as set out in
Egn. (1). The factor pattern and factor structure are
identical in an orthogonal factor solution but differ
in an oblique solution.

In Fig. 1(b), the axes have been placed through
the two distinct clusters of points, so that each cluster
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smaller number of factors, however, the coordinates
of the test vectors with respect to the new oblique
axes. which form the factor pattern matrix, are of
more interest. These are given by P =8¢ ' in the
present example, the factor pattern matrix is

N n*
P = English 0.92 0.08
French 0.63 .13
Italian 072 -0.10 (25)
Physics 0.08 0.78
Chemistry 0.01 .68

The S matrix in Eqn. (24) could be read directly from
Fig. 1{a) by finding the orthogonal projections of the
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test vectors on Factors 1* and 11*, and the P matrix
in Eqn. (25) by finding their oblique projections on
these two factors.

A comparison of the matrices in Eqns. (23) and
(25) shows the advantages of oblique over orthogonal
rotations if the factors are correlated. The factor
definition is clearer in the oblique solution; zero or
near-zero loadings indicate more clearly that physics
and chemistry are not represented in Factor 1* and
that the three lang are not rey din Factor
11*. Some knowledge of the nature of the variables
is required to interpret the factors. Each factor must
be inspected to determine what the variables with
high loadings have in common which is not present
in the variables with low loadings, and then named
appropriately. The task is deceptively simple in the
present example. Since the variables with high load-
ings on Factor 1'/1* are language examinations, and
the variables with low loadings are not, this factor can
be mlerpreted as a language ability factor. Similarly,
Factor II'/11* can be interpreted as a scientific ability/
achievement factor. The task of interpretation can
be much more demanding in studies involving many
variables and several factors,

The new positions of the axes in Fig. 1 were
obtained by analytic methods of rotation, which
replaced the subjective graphical methods used prior
1o the 1950s, in which investigators inspected plots
of each pair of factors from the F matrix. The first
fully analytic procedures for rotation developed by
Carroll (1953) and other factor analysts became
known as quartimax procedures. They aimed to sim-
plify the rows of a matrix of factor loadings, by
maximizing the sum of the fourth powers of the
loadings or by some equivalent criterion, with
communalities held constant. The first fuctor defined
by the quartimax procedures tends to be a general
factor, and the procedures are not widely used.

The analytic criterion used to obtain the orthogo-
nal factor solution in Fig. 1{a) was developed and
subsequently refined by Kaiser (1938). It is kncwn
as the vanmax criterion. and aims to simplify the
columns of the factor matrix by maximizing over all
factors the variance of the squared factor loadings in
each column, after first dividing each factor loading
by the square root of the relevant variable’s commu-
nality to give equal weight to the factors in the
rotation. It requires the minimization of the function

V= "92: él {%f)- = .-2| (,il %}3

The varimax criterion. which is designed to generate
factors on which some variables have high loadings
and others have low loadings, has been found to be
highly satisfactory for orthogonal rotations. and is
very widely used.

The placement of the new axes in Fig. 1(b) was
determined with the aid of the most widely used

(26)

obligue analytic rotation criterion, known as the
direct oblimin criterion (Jennrich and Sampson
1966). This criterion has replaced oblique analytic
rotational criteria based on the factor structure
mairix which were developed in the late 1950s, for
example, Carroll's biquartimin criterion. Following
the same principles as the latter criterion, that i
the minimization over pairs of factors of the cross
products of squared factor loadings, the minimization
of the covariances of these squared loadings, and the
use of a coefficient to vary the relative weight given
to these two components in order to control the
degree of obliquencss of the factors, Jennrich and
Sampson rotated the F matrix directly to the factor
pattern matrix, P, by minimizing the function

2 (2 bt - 2 83 bf,,) @)

G(P) =

where b, and by, are the elements of the matrix P
and & is the variable quantity which controls the
degree of obligueness of the factors. Computer pack-
ages usually allow the investigator to apply a range
of values of & to facilitate the selection of a solution
which best contorms to simple structure. Factors
tend to be oo obligue when & = 0, and become less
obligue s & becomes more negative. A delta value
of appro<imately —0.5 has often been found to yield
relatively “clean” simple structure solutions.

6. Advances in Confirmatory Factor Analysis

The major advance in factor analysis since the late
1960)s has been the development of confirmatory
factor analytic procedures. In the course of devel-
aping maximum likelihood procedures for explora-
tory factor analysis, Joreskog saw their possibilities
for testing hypothesized matrices. Recognizing tha
factor analysis generally wished 1o specify only some
of the parameters in a hypothesized matrix, and to
allow others to vary, he reformulated the fuctor
analysis model to incorporate fixed parameters. con-
strained parameters (unknown in value but equul to
one or more other parameters), and free parameters.
He expressed the model in terms of a variance-
covariance or dispersion matrix which becomes a
correlation matrix if the variables are in standardized
form. That is.

= AdbA" + & (28)

where X is the dispersion matrix of observed scores,
Aisann x m matrix of factor loadings. & is the factor
correlation matrix, and 15 the dmgun.il matrix of
unique variances. In confirmatory factor analysis.
the investigator is free to specify lixed values for
particular parameters in A, &, ond . given some
riction on the total number of fixed parameters.
The matrix X is then estimated by maximum lik
lihood procedures under these conditions. and a
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test applied to determine whether the observed
gispc rsion matrix X differs from the estimated matrix

The model allows great flexibility for testing a wide
variety of hypothesized factor patterns, in which
relationships among the factors may be orthogonal
or oblique or a mixture of the two. Confirmatory
factor analysis has been used, for example, to analyse
data from multitrait, multimethod studies (Werts et
al. 1972), to illuminate a long-standing controversy
on the identification of reading comprehension skills
(Spearritt 1972), and to test the simﬂex assumption
underlying Bloom's taxonomy of educational objec-
tives (Hill and McGaw 1981). It has also facilitated
the comparison of the factorial structure of different
subpopulations, allowing investigators to determine
whether the factorial structure of a given set of vari-
ables varies, for example, with sex, age, ethnicity,
socioeconomic status, or political affiliation, and if
s0, in what manner (e.g., McGaw and Joreskog
1971)?

The model set out in Eqn. (28) forms part of a
more general model for the analysis of covariance
structures, which was subsequently elaborated by
Joreskog to handle a wide renge of statistical models
for multivariate analysis. The LISREL V suite of com-
puter programs (Jéreskog and Sorbom 1981) which
provide for the analysis of linear structural rela-
tionships by the method of maximum likelihood, has
become a basic tool for studying not only exploratory
and confirmatory factor analysis models, but also
path analysis models and models relating to cross-
sectional and longitudinal data (see Structural Equa-
tion Models).

7. Some Additional Methodological Aspects of
Factor Analysis

7.1 Construction of Factor Scales

When factors are identified as a result of a factor
analysis, it is possible to calculate a factor score
for each person on the mew factors, for example
a language score and a science score. With some
exceptions, the calculation of factor scores has not
been an important feature of educational and psycho-
logical studies, in which the emphasis has been mainly
on the identification rather than the measurement
of factors. In some disciplines, however, the chief
concern has been to create composite factor scales
to facilitate further study of a topic.

The most widely used method of calculating a
person’s factor scores has been to regress the factor
loadings on each factor in the factor structure matrix
against the original set of variables. A matrix of
factor-score cogfficients or regression weights can be
found from the formula

W =§R"' (29)
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where S is the rotated factor structure matrix and R
is the original correlation matrix. Factor scores are
conventionally presented as standard scores, derived
by applying the regression weights to a person’s
standard score on each of the original variables.
Other approaches to the estimation of factor scores
are outlined by Harman (1976) and Kim and Mueller
(1978)

7.2 Hierarchical Factor Solutions

Hierarchical factor solutions were attractive to early
British factorists because of their hierarchical
theories of cognitive processes. Accordingly, a gen-
eral factor was extracted from the correlation matrix
as a first step; group factors were then extracted from
the residual correlations (Burt 1950, Vernon 1961).
Even without the initial assumption of a general
factor, the American oblique rotational methods
could still yield an hierarchical factor solution. Pro-
vided the data yielded at least three primary factors,
the correlations among these factors could them-
selves be analysed to arrive at second-order factors;
if there were sufficient primary factors to yield several
second-order factors, the latter could be analysed to
yield third-order factors, and so on. If the matrix
of primary-factor correlations were of unit rank, a
second-order general factor would emerge. If desired,
such hierarchical solutions could be made orthogonal
(Schmid and Leiman 1957).

7.3 Comparison of Factors

Coefficients of congruence designed to measure the
degree of similarity between pairs of factors derived
from different sets of variables in the same domain,
and the degree of similarity between loadings on
pairs of corresponding factors derived when the same
set of variables is applied to different subpopulations,
are summarized in Harman (1976). Comparisons of
factor matrices can be made through confirmatory
factor analysis procedures.

7.4 Assumptions of Linearity

It is usually assumed in factor analysis (necessarily
so with maximum likelihood procedures) that the
variables have a multivariate normal distribution in
the population which has been sampled, and this
implies that the variables are linearly related. Where
this is not the case, multivalued variables may be
normalized as a first step. Care needs to be taken
in applying factor analysis to dichotomously scored
variables such as test or scale items (Kim and Mueller
1978, Muthén 1981). Factor analysis models in which
factors are not linearly related to variables have been
extensively investigated by McDonald (1967).

8. Computer Programs

Widely available statistical packages such as spss,
sAs, BMDP, and osiIRris all contain factor analysis pro-
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grams. For the initial extraction of factors, the
researcher usually has the option of selecting the
principal factor, maximum likelihood, Rao canoni-
cal. Alpha, or image method of factoring. Varimax
and direct oblimin rotational solutions with nomi-
nated values of & are available in most programs,
along with other rotational methods such as. for
instance, Quartimax and Equimax in spss and sas,
and Promax in sas. Two-dimensional plots of the
rotated factors, and the necessary matrix of coeffici-
ents for producing factor scores, are also usually
obtainable.

In addition to the LISREL program mentioned in
Sect. 6. another special purpose program, COFAMM,
is available for confirmatory factor analysis.

9. Applications of Factor Analysis

Factor analysis has made its most direct contribution
to education through its influence on the composition
of test batteries used for educational or vocational
guidance. Batteries of tests such as the sra Primary
Mental Abilities battery and the Psychological Cor-
poration’s Differential Aptitude Tests were designed
to vield separate scores for students on aptitudes or
abilities such as number computation, verbal reason-
ing. verbal comprehension, abstract reasoning, cleri-
cal speed and accuracy. mechanical reasoning, space
relations, language usage. and word fluency. Factor
analytic studies have also contributed to the selection
of areas to be tested in achievement test batteries.
such as reading comprehension. listening com-
prehension, and comprehension and interpretation
in mathematics. science. and social studies. Factor
analysis has served to identify skills, abilities, and
areas of achievement which are relatively inde-
pendent, and has thus avoided unnecessary duplica-
tion of measurement in providing a profile of a
student’s performance. Factor studies have also often
provided the framework for personality and interest
inventories used in guidance and counselling.

The major impact of factor analysis has been in
the area in which it was first employed. that is. in the
study of intellectual or cognitive abilities. It has been
the chief technique for exploring the structure of
human abilities. It has been used to map the broad
areas of human abilities which are needed to account
for the variation which occurs in the performance of
subjects on a great variety of mental tasks. A test
kit of confirmed factors of cognitive abilities was
prepared at the Educational Testing Service (French
1954) and was revised and extended in 1963 and 1976;
the kit has been of great value in defining factors for

taken in connection with Guilford's Structure
of Intellect model (Guilford 1967). and Cattell’s
theory of “crystallized” and “fluid” intelligence
(Cattell 1971), have produced a very considerable
body of knowledge about the structure of human
abilities.

In applications in education, factor analytic studies
have been undertaken in such diverse areas as prose
style. administrative behaviour. occupational classi-
fication, attitudes and belief systems. and the eco-
nomicsof education. The technigue isstill in extensive
use in the exploration ot abilities. in the refining of
tests and scales, and in the development of composite
variables for use in research studies. Its most promis-
ing applications in recent years. however. have been
concerned with the testing of explicit hypotheses
about the structure of sets of variables, as in the study
of growth models and other models mentioned in
Sect. 6.

Factor analysis will remain an important technique
for reducing and classifying sets of variables as a
means of improving theoretical understanding in
various disciplines. and for testing hypotheses about
structural relationships among sets of variables.
Confirmatory factor analysis procedures should assist
in the formulation of more precise theories about
such structural relationships: current theories about
the structure of educational or psychological domains
have rarely been formulated in sufficiently explicit
terms to attract support from these procedures. In
the search for explanations about how and why such
structural relationships take the form they do, closer
links can be expected to be developed between factor
analysis and path analysis models. Methodological
developments might be expected in the application
of factor analysis to dichotomously scored variables
and to categorical variables. and in the development
of nonlinear models where linear models prove to be
inadequate. Considerable scope remains for research
on the emergence of factors. involving neurological.
general environmental, and schooling influences:
relationships between factorial and information pro-

ing models (Sternberg 1977) also need investi-
gation. Finally, comprehensive factor studies of the
abilities tested in different school subjects would be
highly relevant to the design of school curricula.

See also: Path Analysis: Statistical Analysis in Educational
Research: Factorial Modeling
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ponents fitted by data analysis to vector variables.
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independent variates (i.e., the measurements). The
researcher is also required to specify an order of
extraction of the factors, because the mathematical
simplicity and computational efficiency of FaM are
purchased at the expense of order dependence of the
factors. The FaM data analysis yields a structural
equation for every observational variate and attri-
butes all explained variance unambiguously among
the factors. This is possible because the factors are
constructed to be mutually uncorrelated. Partitioning
of criterion variance into independent contributions
from uncorrelated factors is particularly useful in
educational policy studies, where intervention deci-
sions have to be justified by straightforward causal
inferences. :
The method was nramed factorial modeling to
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ance. In the design of experiments, a balanced sam-
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es from a randomized factorial experiment,
but if the data represent an important natural system
in situ, thé external validity of the factorial model
may be much higher than that of any possible experi-
ment. When the constructs of a theory represent
interdependent attributes. the corresponding factors
of an FaM model for data represent the partial con-
tents of their constructs which are nonoverlapping
with the contents of previously extracted factors.
Thus FaM is a method which resembles multiple
partial correlation,

FaM does not employ an al: .ithm derived by the
differential calculus of linear systems. The method
may appeal to rescarchers who fear that multivariate
regression methods overpower many of the data col-
lections available in education. The rationale for FaM
is that using noncalculus multivariate mathematics on
data will produce loose fitting models that may not
be readily transferred to new situations.

1. Mathematics

Factorial modeling extracts -ordered orthogonal fac
tors by the method of matrix exhaustion, Each fac
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is specified by assignment to it of an exclusive subset
of the independent variates. It is weighted by the
covariances of those specifying variates with a select-
ed dependent variate in the residual matrix pre-
vailing at the start of that factoring step. For the first
factor the weights are simply the bivariate cor-
relations of the specifying variates with the selected
criterion, or simple predictive validities. For all later
factors, the weights are residual covariances rep-
resenting residual predictive validities. It is not nec-
essary that every independent variate be assigned to
the specification of one of the factors, but it is highly
desirable that at least two variates specify each factor.
Otherwise. the total variance for a single variate
specifying a factor will be swept out. resulting in
h* =1 for that variate and a degenerate structural
equation for it. The object of modeling is to regress
criteria on latent variables, not on observed variates.

Let an idempotent matrix containing ones on the
main diagonal in the positions corresponding to the
positions in the correlation matrix of the specifving
variates for the kth factor and zeros evervwhere else
be identified as I,. Let

w=I r. (#%]

where r, is the column of the residual matrix C, which
belongs to the selected criterion. Then v, is a vector
of the order of R (which may be designated p for the
count of all the measurement variates. independent
plus dependent). but the only nonzero elements of
v, are predictive validities of the specification variates
for the kth factor. For the following equation

he = (1/Vv,' Civi) v (2)

when k = 1, C, = R, the correlation matrix for the
measurements. When k& = 2, C, is the covariance
matrix remaining after the first factor has been
exhausted from R. In general. C; is the residual
covariance matrix after k — 1 factors have been
exhausted.

Then the structural coefficients for the kth factor
are

s =Cihy (3
and C, is exhausted of s,.
Cia=GC — 58/ (4)

When all n planned factors have been computed,
their column vectors of structural coefficients are
assembled in a p x n matrix §. Now the theory plus
error partition of R is given by

. R=88§8 +C,., (5)

The elements of the main diagonal of the theory
matrix 88 are the proportions of the variate vari-
ances explained by the theory for the data, called the
communalities, i, The square roots of the elements
of the main diagonal of C,., are the disturbance

weights. d,. which apply to the combined unknown
sources of variance in each of the variates. From
these results a structural equation can be written for
each variate

=safi+ s fit ...

In this equation the f; are the factor scores and the
1, 15 a uniqueness score. thar is. ore for the
combination of all other sources of variance in z.
Dropping the final addend gives the muluple
regression equation

+ 5 fo + d, uy (6}

(N

This shows that any structural coefficient 5., besides
being a product—-moment correlation between a vari-
ate and a factor. is also a standardized muluple
regression weight for the regression of the jth variate
on the kth factor. and its square, s3. is the con-
tribution of the kth factor to the explanation of the
variance in the jth variate. The squared multiple
correlation coefficient is the communality

=501+ 5

Ri=hi=si+sh+...4+5 (8)
Thus the canon of unambiguous attribution of vari-
ance is satisfied.

Two salient facts emerge from this matheman
The exact definition achieved for each factor beyond
the first is order dependent. in the sense that it
depends in part on the order in which the factors are
extracted. Also. as factoring continues, the degrees
of freedom for arbitrary location of a, factor are
reduced and the disciplinary force of the uncorre-
latedness requirement over the hypothetical location
of the factor becomes stronger.

As orniginally proposed by Lohnes (1979). FaM
required the designation of a key criterion toward
which all the factors were oniented. Lohnes has
modified the algorithm so that when there are mul-
tiple criteria, it searches the vectors of residual pre-
dictive validities of the specification variates for a
factor to find the largest sum of squares of those
validities, and orients the factor to that eriterion for
which it has, in this sum of squares sense. the largest
predictive validity. The program provides for the user
to override this feature by desigrating the criterion
variate toward which each factor is to be oriented,
and it is permissible to designate the same criterion
for all the factors, thus restoring the original emphasis
on a key criterion.

The current program for FaM also incorporates an
improved algebra for computing coefficients defining
the latent variables as linear functions of some of
the variates. The new algebra supplies true zero
coefficients in every possible place. Only the speci-
fication variates for the first factor enter its opera-
tional definition. Only the specification variates for
the first two factors enter the operational definition
of the second factor. For any other factor, only
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