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Preface

A Second Edition has given me several opportunities, which I have grasped with
some eagerness. The first involved a matter of house-keeping — the correction of
typos and an equation (Eq. (11.31)) in the First Edition. The second has allowed
me to add the theory of the elasticity of optical modes, which became formulated
too late to be included in the First Edition, but which resolved some uncertainties
regarding mechanical boundary conditions. Given the current interest in hot
phonons in high-power devices, I have updated the section on phonon lifetime.
But the greatest opportunity was to expand the book to include some of the topics
that grew in significance during the decade following the writing of the First
Edition. Four new chapters focus on spin relaxation, the III-V nitrides, and the
generation of terahertz radiation. In the burgeoning technology of spintronics, the
rate of decay of the spin-polarization of the electron gas is a crucial parameter,
and I have reviewed the mechanisms for this in both bulk and low-dimensional
material. The advance of growth techniques and the technological need for
higher-powered devices and for visible LEDs have thrust AIN, GaN, and InN
and their alloys into the forefront of semiconductor physics. New properties
associated with the hexagonal lattice have presented a challenge, and these are
described in the chapter on electrons and phonons in the wurtzite lattice, and
their role in heterostructures and multilayers is reviewed in a further chapter.
Considerable effort is being made to close the gap in the electromagnetic
spectrum, roughly between 300GHz and 30THz, in the emission spectrum of
sources of radiation. The final chapter focuses on some of the physical
mechanisms that are used or proposed to fill this gap. Terahertz radiation has
applications in astrophysics, study of the atmosphere, biology, medicine, security
screening, illicit material detection, non-destructive analysis, communications,
and ultra-fast spectroscopy. The development of a compact, coherent continuous-
wave, solid-state source is therefore of considerable technological importance.



Preface Xii

It was timely, therefore, that John Fowler of CUP suggested I tackle a second
edition of my book. His efforts and those of his CUP colleagues, Dawn Preston,
Lindsay Barnes and Anne Rix, in gently guiding an author, only partly computer
literate, through the mysteries of electronic publishing, were much appreciated. I
was also much delighted by Ann Ridley’s cover design of the wurtzite lattice that

has captured some of its quantum mystery.
In preparing this new edition I have been generously helped by friends, who

also happen to be colleagues. My warm thanks go to Angela Dyson, Ceyhun
Bulutay, Martin Vaughan, and Alan Brannick for much practical assistance, and
to Nic Zakhlenuik for his attempts (not always successful) to curb what passes for
intuition in favour of formal proof. But my timeless gratitude is for my wife,
Sylvia, who has borne the frequent fate over the last few months of book-
widowhood with unfailing good nature.

Thorpe-le-Soken BKR
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Introduction

It is the intellect’s ambition to seem
no longer to belong to an individual.
Human, All Too Human, F. Nietzsche

If one tells the truth, one is sure, sooner or later, to be found out.
(Phrases and Philosophies for the Use of the Young, O. Wilde)

This book has grown out of my own research interests in semiconductor multi-
layers, which date from 1980. It therefore runs the risk of being far too limited in
scope, of prime interest only to the author, his colleagues and his research students.
I hope that this is not the case, and of course I believe that it will be found useful by
a large number of people in the field; otherwise I would not have written it.
Nevertheless, knowledgeable readers will remark on the lack of such fashionable
topics as the quantum-Hall effect, Coulomb blockade, quantized resistance,
quantum tunnelling and any physical process that can be studied only in the
millikelvin regime of temperature. This has more to do with my own ignorance
than any lack of feeling that these phenomena are important. My research interests
have not lain there. My priorities have always been to try to understand what goes
on in practical devices, and as these work more or less at room temperature, the
tendency has been for my interest to cool as the temperature drops. The essential
entities in semiconductor multilayers are electrons and phonons, and it has seemed
to me fundamental to the study and exploitation of these systems that the effect of
confinement on these particles and their interactions be fully understood. This book
is an attempt to discuss what understanding has been achieved and to discover
where it is weak or missing. Inevitably it emphasizes concepts over qualitative
description, and experimentalists may find the paucity of experimental detail
regrettable. I hope not, though I would appreciate their point, but the book is long
enough as it is, and there are excellent review articles in the literature.
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Fig. 1 Types of multilayered structures: (a) Single heterojunction,
(b) Modulation-doped heterojunction, (c) Quantum well, (d) Superlattice.

At the risk of being boring, let me remind the reader what a semiconductor
multilayer is about. There are several kinds of layered structure, of which those
shown in Fig. 1 are the most common. They are interesting only insofar as they
have a dimension that is smaller than the coherence length of an electron, in
which case the electron becomes quantum confined between two potential steps.
The free motion of the electron is then confined to a plane and many of its
properties stem from this two-dimensional (2D) space. Electrons are not 2D
objects and never could be, but for brevity they are usually referred to as 2D
electrons when they are in the sort of layered structure shown in Fig. 1. The most
striking effects are the quantization of energy into subbands, as depicted in Fig. 2
and Fig. 3, and the consequent transformation of the density-of-states function as
shown in Fig. 4 for 3D, 2D, 1D and 0D electrons. Scattering events must now be
classified into intrasubband, intersubband and capture processes, as indicated in
Fig. 3. All of this is qualitatively well understood. The real problem here concerns
the description of the confined-electron wavefunction (Fig. 5), which involves
solving the Schrodinger equation in an inhomogeneous system. This problem is
as basic as one can get in a multilayer system and calls for a comprehensive
pseudopotential band structure computation. But for me, and anyone interested in
further describing scattering events, this approach is too computer-intensive and
inflexible, though in some cases there may be little alternative. An attractive
(because simple) approximation is to take as known and unchanged the Bloch
functions in each bulk medium and connect them at the interface, satisfying the



