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Introduction

1.1 Preface and conventions

This book is meant as a quick and dirty introduction to the techniques of quantum field
theory. It was inspired by a little book (long out of print) by F. Mandl, which my advisor
gave me to read in my first year of graduate school in 1969. Mandl’s book enabled the
smart student to master the elements of field theory, as it was known in the early
1960s, in about two intense weeks of self-study. The body of field-theory knowledge
has grown way beyond what was known then, and a book with similar intent has to be
larger and will take longer to absorb. I hope that what I have written here will fill that
Mandl niche: enough coverage to at least touch on most important topics, but short
enough to be mastered in a semester or less. The most important omissions will be
supersymmetry (which deserves a book of its own) and finite-temperature field theory.
Pedagogically, this book can be used in three ways. Chapters 1-6 can be used as a text
for a one-semester introductory course, the whole book for a one-year course. In either
case, the instructor will want to turn some of the starred exercises into lecture material.
Finally, the book was designed for self-study, and can be assigned as a supplementary
text. My own opinion is that a complete course in modern quantum field theory needs
3-4 semesters, and should cover supersymmetric and finite-temperature field theory.

This statement of intent has governed the style of the book. I have tried to be terse
rather than discursive (my natural default) and, most importantly, I have left many
important points of the development for the exercises. The student should not imagine
that helshe can master the material in this book without doing at least those exercises
marked with a *. In addition, at various points in the text I will invite the reader to prove
something, or state results without proof. The diligent reader will take these as extra
exercises. This book may appear to the student to require more work than do texts that
try to spoon-feed the reader. I believe strongly that a lot of the material in quantum
field theory can be learned well only by working with your hands. Reading or listening
to someone’s explanation, no matter how simple, will not make you an adept. My hope
is that the hints in the text will be enough to let the student master the exercises and
come out of this experience with a thorough mastery of the basics.

The book also has an emphasis on theoretical ideas rather than application to experi-
ment. Thisis partly due to the fact that there already exist excellent texts that concentrate
on experimental applications, partly due to the desire for brevity, and partly to increase
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the shelf life of the volume. The experiments of today are unlikely to be of intense inter-
est even to experimentalists of a decade hence. The structure of quantum field theory
will exist forever.

Throughout the book I use natural units, where # = ¢ = 1. Everything has units of
some power of mass/energy. High-energy experiments and theory usually concentrate
on the energy range between 10~ and 103 GeV and I will often use these units. Another
convenient unit of energy is the natural one defined by gravitation: the Planck mass,
Mp ~ 10'° GeV, or reduced Planck mass, mp =~ 2 x 10!8 GeV. The GeV is the natural
unit for hadron masses. Around 0.15GeV is the scale at which strong interactions
become strong. Around 250 GeV is the natural scale of electro-weak interactions, and
~2 x 10'6 GeV appears to be the scale at which electro-weak and strong interactions
are unified.

I will use non-relativistic normalization, (p|q) = &%(p — @), for single-particle states.
Four-vectors will have names which are single Latin letters, while 3-vectors will be
written in bold face. I will use Greek mid-alphabet letters for tensor indices, and Latin
early-alphabet letters for spinors. Mid-alphabet Latin letters will be 3-vector compo-
nents. I will stick to the van der Waerden dot convention (Chapter 5) for distinguishing
left- and right-handed Weyl spinors. As for the metric on Minkowski space, I will use
the West Coast, mostly minus, convention of most working particle theorists (and of
my toilet training), rather than the East Coast (mostly plus) convention of relativists
and string theorists.

Finally, a note about prerequisites. The reader must begin this book with a thorough
knowledge of calculus, particularly complex analysis, and a thorough grounding in non-
relativistic quantum mechanics, which of course includes expert-level linear algebra.
Thorough knowledge of special relativity is also assumed. Detailed knowledge of the
mathematical niceties of operator theory is unnecessary. The reader should be familiar
with the Einstein summation convention and the totally anti-symmetric Levi-Civita
symbol €1--%, We use the convention €123 = 1 in Minkowski space. It would be useful
to have a prior knowledge of the theory of Lie groups and algebras, at a physics level of
rigor, although we will treat some of this material in the text and Appendix G. I have
supplied some excellent references [1-4] because this math is crucial to much that we
will do. As usual in physics, what is required of your mathematical background is a
knowledge of terminology and how to manipulate and calculate, rather than intimate
familiarity with rigor and formal proofs.

1.1.1 Acknowledgements

I mostly learned field theory by myself, but I want to thank Nick Wheeler of Reed
College for teaching me about path integrals and the beauties of mathematical physics in
general. Roman Jackiw deserves credit for handing me Mandl’s book, and Carl Bender
helped me figure out what an instanton was before the word was invented. Perhaps the
most important influence in my grad school years was Steven Weinberg, who taught
me his approach to fields and particles, and everything there was to know about broken
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symmetry. Most of the credit for teaching me things about field theory goes to Lenny
Susskind, from whom I learned Wilson’s approach to renormalization, lattice gauge
theory, and a host of other things throughout my career. Shimon Yankielowicz and
Eliezer Rabinovici were my most important collaborators during my years in Israel.
We learned a lot of great physics together. During the 1970s, along with everyone else
in the field, I learned from the seminal work of D. Gross, S. Coleman, G. 't Hooft,
G. Parisi, and E. Witten. Edward was a friend and a major influence throughout my
career. As one grows older, it’s harder for people to do things that surprise you, but
my great friends and sometimes collaborators Michael Dine, Willy Fischler, and Nati
Seiberg have constantly done that. Most of the field theory they’ve taught me goes
beyond what is covered in this book. You can find some of it in Michael Dine’s recent
book from Cambridge University Press.

Field theory can be an abstract subject, but it is physics and it has to be grounded in
reality. For me, the most fascinating application of field theory has been to elementary
particle physics. My friends Lisa Randall, Yossi Nir, Howie Haber, and, more recently,
Scott Thomas have kept me abreast of what’s important in the experimental foundation
of our field.

In writing this book, I’ve been helped by M. Dine, H. Haber, J. Mason, L. Motl,
A. Shomer, and K. van den Broek, who’ve read and commented on all or part of the
manuscript. The book would look a lot worse than it does without their input. Chapter
10 was included at the behest of A. Strominger, and I thank him for the suggestion.
Chris France, Jared Rice, and Lily Yang helped with the figures. Finally, I’d like to
thank my wife Ada, who has been patient throughout all the trauma that writing a
book like this involves.

1.2 Why quantum field theory?

o e e e s i e
Students often come into a class in quantum field theory straight out of a course in
non-relativistic quantum mechanics. Their natural inclination is to look for a straight-
forward relativistic generalization of that formalism. A fine place to start would seem to
be a covariant classical theory of a single relativistic particle, with space-time position
variable x* (), written in terms of an arbitrary parametrization t of the particle’s path
in space-time.

The first task of a course in field theory is to explain to students why this is not the
right way to do things.! The argument is straightforward.

Consider a classical machine (an emission source) that has probability amplitude
JE(x) of producing a particle at position x in space-time, and an absorption source,
which has amplitude J (x) to absorb the particle. Assume that the particle propagates

! Then, when they get more sophisticated, you can show them how the particle path formalism can be used,
with appropriate care.
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Boosts can reverse causal order for (x — y)2<0.

freely between emission and absorption, and has mass m. The standard rules of quan-
tum mechanics tell us that the amplitude (to leading order in perturbation theory in
the sources) for the entire process is (remember our natural units!)

AAE =fd4xd4y(x|e_iH(XO—yo)|y)JA(X)JEU’), (1.1

where | x) is the state of the particle at spatial position x. This doesn’t look very Lorentz-
covariant. To see whether it is, write the relativistic expression for the energy H =

Vp? +m? = wp. Then
ApE = f d*xd*y Ja (x)JE() f d3p|(0|p)|2e= P, (1.2)

The space-time set-up is shown in Figure 1.1. In writing this equation I've used the fact
that momentum is the generator of space translations? to evaluate position/momentum
overlaps in terms of the momentum eigenstate overlap with the state of a particle at
the origin. Ive also used the fact that (wp, p) is a 4-vector to write the exponent as a
Lorentzscalar product. So everything is determined by quantum mechanics, translation
invariance and the relativistic dispersion relation, up to a function of 3-momentum. We
can determine this function up to an overall constant, by insisting that the expression is
Lorentz-invariant, if the emission and absorption amplitudes are chosen to transform
as scalar functions of space-time. An invariant measure for 4-momentum integration,
ensuring that the mass is fixed, is d*p §(p? — m?). Since the momentum is then forced
to be time-like, the sign of its time component is also Lorentz-invariant (Problem 2.1).
So we can write an invariant measure d*p §(p? — m?)0 (p°) for positive-energy particles
of mass m. On doing the integral over p° we find d3p/ (2wp). Thus, if we choose the
normalization

Olp) = (1.3)

1
,/(2n)32wp’

then the propagation amplitude will be Lorentz-invariant. The full absorption and
emission amplitude will of course depend on the Lorentz frame because of the coordi-
nate dependence of the sources Jg A . It will be covariant if these are chosen to transform
like scalar fields.

2 Here I'm using the notion of the infinitesimal generator of a symmetry transformation. If you don’t know
this concept, take a quick look at Appendix G, or consult one of the many excellent introductions to Lie
groups [1-4].
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This equation for the momentum-space wave function of “a particle localized at
the origin” is not the same as the one we are used to from non-relativistic quantum
mechanics. However, if we are in the non-relativistic regime where |p| < m then the
wave function reduces to 1/m times the non-relativistic formula. When relativity is
taken into account, the localized particle appears to be spread out over a distance of
order its Compton wavelength, 1/m = a/(mc).

Our formula for the emission/absorption amplitude is thus covariant, but it poses the
following paradox: it is non-zero when the separation between the emission and absorption
points is space-like. The causal order of two space-like separated points is not Lorentz-
invariant (Problem 2.1), so this is a real problem.

The only known solution to this problem is to impose a new physical postulate:
every emission source could equally well be an absorption source (and vice versa). We
will see the mathematical formulation of this postulate in the next chapter. Given this
postulate, we define a total source by J(x) = Jg(x) + Ja(x) and write an amplitude

d3p .
_ 4_ 44 0 _ 0y.—ip(x—y)
ApE = fd xd yJ(x)J(y)f 2w,,(27r)3[9(x ye
+00° — x0)eP—V)
= [ atxdtI@I0)Decx - ), (14)

where 6(x°) is the Heaviside step function which is 1 for positive x° and vanishes for
x% < 0. From now on we will omit the 0 superscript in the argument of these functions.
This formula is manifestly Lorentz-covariant when x — y is time-like or null. When
the separation is space-like, the momentum integrals multiplying the two different step
functions are equal, and we can add them, again getting a Lorentz-invariant amplitude.
It is also consistent with causality. In any Lorentz frame, the term with 6(x° — »°) is
interpreted as the amplitude for a positive-energy particle to propagate forward in time,
being emitted at y and absorbed at x. The other term has a similar interpretation as
emission at x and absorption at y. Different Lorentz observers will disagree about the
causal order when x — y is space-like, but they will all agree on the total amplitude for
any distribution of sources.

Something interesting happens if we assume that the particle has a conserved
Lorentz-invariant charge, like electric charge. In that case, one would have expected
to be able to correlate the question of whether emission or absorption occurred to the
amount of charge transferred between x and y. Such an absolute definition of emission
versus absorption is not consistent with the postulate that saved us from a causality
paradox. In order to avoid it we have to make another, quite remarkable, postulate:
every charge-carrying particle has an anti-particle of exactly equal mass and opposite
charge. If this is true we will not be able to use charge transfer to distinguish between
emission of a particle and absorption of an anti-particle. One of the great triumphs of
quantum field theory is that this prediction is experimentally verified. The equality of
particle and anti-particle masses has been checked to one part in 10'8 [5].

Now let’s consider a slightly more complicated process in which the particle scatters
from some external potential before being absorbed. Suppose that the potential is
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Scattering in one frame is production amplitude in another.

short-ranged, and is turned on for only a brief period, so that we can think of it
as being concentrated near a space-time point z. The scattering amplitude will be
approximately given by propagation from the emission point to the interaction point
z, some interaction amplitude, and then propagation from z to the absorption point.
We can draw a space-time diagram like Figure 1.2. We have seen that the propagation
amplitudes will be non-zero, even when all three points are at space-like separation
from each other. Then, there will be some Lorentz frame in which the causal order is
that given in the second drawing in the figure. An observer in this frame sees particles
created from the vacuum by the external field! Scattering processes inevitably imply
particle-production processes.?

We conclude that a theory consistent with special relativity, quantum mechanics, and
causality must allow for particle creation when the energetics permits it (in the example
of the previous paragraph, the time dependence of the external field supplies the energy
necessary to create the particles). This, as we shall see, is equivalent to the statement
that a causal, relativistic quantum mechanics must be a theory of quantized local fields.
Particle production also gives us a deeper understanding of why the single-particle wave
function is spread over a Compton wavelength. To localize a particle more precisely we
would have to probe it with higher momenta. Using the relativistic energy-momentum
relation, this means that we would be inserting energy larger than the particle mass.
This will lead to uncontrollable pair production, rather than localization of a single
particle.

Before leaving this introductory section, we can squeeze one more drop of juice
from our simple considerations. This has to do with how to interpret the propagation
amplitude Dg(x — y) when x — y is space-like, and we are in a Lorentz frame where

3 Indeed, there are quantitative relations, called crossing symmetries, between the two kinds of amplitude.



