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Preface

The history of semiconductor wire or whisker growth dates back to the 1960s.
The term nanowire, however, was first introduced in the late 1990s when
semiconductor wires with diameters down to the 10 nm scale were
successfully synthesized on a large scale. Interest in this fascinating material
has truly taken off ever since then. The science and technology of semi-
conductor nanowires have been at the forefront of nanomaterial and nano-
device research and have been advancing at an amazing pace. During the
past decade, we have witnessed an explosion of nanowire research in areas
from the development of new material synthesis techniques, understanding
of growth mechanism, engineering of heterostructure nanowire design to the
exploration of fundamentally new electrical, optical and mechanical prop-
erties offered by these substantially defect-free, one-dimensional nano-
structures. More importantly, exciting applications of nanowires in the field
of electronics, optoelectronics, energy generation and storage have now
emerged and are poised to enter the commercial market and change people's
everyday lives in the near future. The goal of this book is to present
a summary of these latest developments in this important field as well as an
outlook as to what might be in store in the next decade based on these
exciting developments.

This book contains nine chapters, covering topics from nanowire growth
and integration, to high performance electronic devices (transistors and
memory), biosensors, optoelectronic devices and energy devices such as
photovoltaics, mechanical nanogenerators, thermoelectric harvesters and
lithium-ion batteries. The book can serve as a reference book for experts and
graduate student researchers aspiring to work in related fields, as well as
industry watchers interested in learning how nanotechnology is trans-
forming electronics and energy devices. It may also serve as a textbook for
senior undergraduate and graduate students in materials science and
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vi Preface

engineering, chemistry or electrical engineering, taught chapter by chapter;
or as an introduction or reference book to a class on electronic materials, by
selecting an according subset of the chapters as the chapters are relatively
self-contained.

The chapters are written by experts in the field of nanotechnology and, in
particular, recognized leaders in semiconductor nanowire research. We
would particularly like to thank Professors Charles Lieber, Peidong Yang and
Zhong Lin Wang, who are pioneers of this field, for their valuable contri-
butions despite their busy schedules, and also thank Professors Yi Cui, Song
Jin, Ritesh Agarwal, Bozhi Tian and Renkun Chen, who have become major
players in nanowire research, for their contributions. We wish also to thank
L. Chen and Dr Y. Yang for their help in editing the book.

Wei Lu

Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109

Jie Xiang

Electrical and Computer Engineering
University of California - San Diego

La jJolla, CA 92093
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CHAPTER 1

Semiconductor Nanowire
Growth and Integration

LIN CHEN®, WEI LU*?, AND CHARLES M. LIEBER*>®

*Electrical Engineering and Computer Science, University of Michigan -
Ann Arbor, Ann Arbor, Michigan, 48109, USA; bDepartment of Chemistry
and Chemical Biology Harvard University, Cambridge, Massachusetts 02138,
USA; “School of Engineering and Applied Science, Harvard University,
Cambridge, Massachusetts 02138, USA

*E-mail: wluee@eecs.umich.edu, cml@cmliris.harvard.edu

1.1 Introduction

To date, numerous studies have been carried out to explore nanowires as new
building blocks in electronics,*** photonics,'*** solar-cells,?*-*° batteries,3*-*
nanogenerators,*** and biological/chemical sensors.’””** Commonly cited
properties of nanowires in these studies that can be advantageous are the
small diameters, large surface area and smooth surfaces of the nanowire
materials. For example, the large surface area and small diameters enabled
nanowire electrodes to outperform thin-film electrodes in battery applica-
tions in terms of rate of charging/discharging and stability (e.g., small
diameters can better sustain strain without cracking), while the nearly-
perfect material quality has enabled optical and electrical pumped nanowire
lasers. Controlled nanowire growth has also enabled biosensors with inte-
grated detectors and electrodes,*?>* all achieved in a single nanowire
during growth. Another aspect that sets the “bottom-up” nanowire system
apart is the ability to obtain high quality nanowire heterostructures during

RSC Smart Materials No. 11

Semiconductor Nanowires: From Next-Generation Electronics to Sustainable Energy
Edited by Wei Lu and Jie Xiang

© The Royal Society of Chemistry 2015

Published by the Royal Society of Chemistry, www.rsc.org

1



2 Chapter 1

growth, including core/shell radial heterostructures and superlattice axial
heterostructures. Such heterostructures are extremely difficult if not impos-
sible to obtain using conventional fabrication methods, while the small size
and volumetric similarity of nanowire structures can produce coherently
strained heterostructures free from interfacial dislocations even for materials
with relatively large lattice mismatch (e.g., Ge and Si). This ability to grow
high-quality heterostructures has in turn led to the demonstration of several
high-performance electrical and photonic devices that have only been
demonstrated in the nanowire form.

This chapter will review fundamental growth topics for semiconductor
nanowires, particularly focusing on the nanocluster-mediated VLS growth
mechanism that has been widely employed and proven to be extremely
flexible. The general concept of VLS growth will be introduced, followed by
discussions of how the basic growth mode can be expanded to realize more
complex and functional nanowire structures, such as radial and axial het-
erojunctions, as well as dopant incorporation. Factors affecting the growth
dynamics and growth models will then be presented, followed by discussions
of recent advances in increasing structural complexity, for example, through
controlled formation of merged nanowires and kinks.

1.2 Basics of Nanocluster-Mediated VLS Nanowire
Growth

Interest in nanowires was largely driven by the successful growths of 10 nm
scale nanowires using the VLS method in the late 1990s.** The history of VLS
growth can be traced back to the 1960s by Wagner,** who successfully
employed this method to grow silicon microwires (whiskers). Whisker
research remained a productive field; however, the relatively large size
(>0.1 pm in diameter) of the whiskers produced in these early days offer few
real practical advantages compared with fabricated structures. In fact,
nanometer scale nanowires were not thought to be possible until the
experimental demonstrations in 1998 by Morales et al.** The early demon-
strations employed laser ablation to generate the source vapor needed for
VLS growth to obtain single-crystalline Si and Ge nanowires. Soon the process
was expanded to more controllable methods such as chemical deposition
(CVD) and VLS, which has become the dominant option for nanowire growth
due to its simple realization and flexible and excellent control over many
aspects of the synthesis process. Figure 1.1 highlights some of the notable
applications for nanowire devices.*>*7~*°

In a typical VLS growth process, as schematically illustrated in Figure 1.2,
metal nanoparticles (either elemental particles such as Au, Ag, Cu, Al, Au or
their alloys®’) are employed as a catalyst to initiate and define nucleation, as
well as facilitate activation/decomposition the molecular reactants (if used).
During the growth process, the metal nanoparticles are first heated up above
the eutectic temperature for the target metal-semiconductor system to create



