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This book is also dedicated to memory of my lovely son Elshad (1977—2000),
who was a selfless manager for the American petrol company Exxon.
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Preface

Give me a place to stand on, and I will move the Earth.
Archimedes

Mathematics is the language with which God has written the universe.
Galileo Galilei

As a well spent day brings happy sleep, so life well used brings happy death
Leonardo da Vinci

Scientists investigate that which already is;engineers create that which has never
been
Albert Einstein

The primary goals of this book are to present the basic concepts and principles of
mathematical programming in terms of set-valued analysis (Chapters 2 and 3) and
on the basis of the method of approximation, to develop a comprehensive optimal-
ity theory of problems described by ordinary and partial differential inclusions
(DFI) (Chapters 4—6). This book consists of six chapters divided into sections and
subsections, and contains many results that have not been published in the mono-
graphic literature.

In Chapter 1, convex sets and convex functions are studied in the setting of n-
dimensional Euclidean space. However, the reader familiar with functional analysis
can generalize the main results to the case of infinite-dimensional functional
spaces. In spite of the fact that the stated notions and results are known, they play a
decisive role for obtaining the main results in the next chapters of the book. The
key issues of convex analysis in finite-dimensional spaces have been addressed in
the books Convex Analysis by Rockafellar and Convex Analysis and Extremum
Problems by B.N. Pshenichnyi. The identifications of convex functions and their
epigraphs make it easy to pass back and forth between the geometric and analytical
approaches. It is shown that convex sets and functions form classes of objects pre-
served under numerous operations of combination; pointwise addition, pointwise
supremum, and infimal convolution of convex functions are convex.

In Chapter 2, the apparatus of locally adjoint mappings (LAM) (which is new)
is studied in the light of convex analysis. It is the fundamental concept in what fol-
lows, and it is used to obtain the optimality conditions for the problems posed in
this book. We give the calculus of LAM on different multivalued mappings, such
as the sum, composition, and inverse. We introduce the adjoint (not locally adjoint)
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mapping, using the recession cone, and the connection between the adjoint and
LAM is established. Based on the adjoint mapping, the duality theorems for convex
set-valued mappings are proved.

Chapter 3 is devoted to applications of these basic tools to the study of mathemati-
cal programming with possibly nonsmooth data. Starting with problems of mathemati-
cal programming under functional and geometric constraints, we then consider
various problems of constrained optimization, minimax problems and equilibrium
constraints, infimal convolution of convex functions, duality in convex programming,
and duality relations. In order to formulate a necessary condition for the existence of
an extremum, of course, some special condition by function taking part in the given
problem is required. In particular, in some neighborhood of a point minimizing our
objective function, we deal with the comparatively easily computable functions. As is
known, a smooth function admits a linear approximation. On the other hand, a convex
function can be approached by positively homogeneous functions. However, a non-
smooth and nonconvex function cannot be approximated in a neighborhood of a point
by positively homogeneous functions. Precisely this class of functions is required for
introducing the concept of convex upper approximations (CUAs). The key tools of
our analysis are based on the extremal principle and its modifications together with
the LAM calculus.

Chapters 4 and 5 deal mostly with optimal control problems of the Bolza type
described by ordinary differential, high-order differential, delay-differential, and
neutral functional-differential inclusions. The development and applications of the
LAM are demonstrated in these problems with ordinary discrete and differential
inclusions. In particular, for polyhedral DFI, under the corresponding condition for
generality of position, the theorem of the number of switchings is proved. The cor-
responding results are obtained for linear optimal control problems in linear mani-
folds. For a nonautonomous polyhedral DFI, a special condition for generality of
position is formulated. Moreover, for problems described by ordinary nonconvex
DFI under the specially formulated monotonicity and #,-transversality conditions,
sufficient conditions for optimality are proved.

In Chapter 6, we continue the study of optimal control problems governed by dis-
crete and differential inclusions with distributed parameters, which during the past
15—20 years has been a basic source of inspiration for analysis and applications. Using
LAM and the discrete-approximation method in Hamiltonian and Euler—Lagrange
forms, we derive necessary and sufficient optimality conditions for various boundary
values (Dirichlet, Neumann, Cauchy) problems for first-order, elliptic, parabolic, and
hyperbolic types of discrete and partial DFI. One of the most characteristic features of
such approaches with partial DFI is peculiar to the presence of equivalents to the LAM.
Such problems have essential specific features in comparison with the ordinary differ-
ential model considered in the second part of the book. For every concrete problem
with partial DFI, we establish rather interesting equivalence results that shed new light
on both qualitative and quantitative relationships between continuous and discrete
approximation problems.
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In Chapter 5 and the second part of Chapter 6, we construct the dual problem of
convex problems for ordinary and partial differential inclusions of hyperbolic, para-
bolic, and elliptic types. We study separately the duality problems with first-order
partial differential inclusions. As is known, duality problems have always been at
the center of convex optimality theory and its applications. In this book, we formu-
late duality results and search for the conditions under which primary and dual pro-
blems are connected by such duality relations. For duality constructions of convex
problems, we use the duality theorems concerning infimal convolution and the
addition of convex functions.

Thus, we can list the major features of our book that make it unique:

* The introduction of a new concept of LAM and its calculus.

» The connection between LAM and adjoint (not locally) mappings defined in terms of the
recession cone.

* Duality theorems for convex multivalued mappings established in terms of a Hamiltonian
function.

» The basic results of mathematical programming in terms of Hamiltonian functions.

* Under a suitable condition for generality of position, the theorem of the finiteness of
switching numbers for optimal control of polyhedral differential inclusions.

« Under a special f;-transversality condition, new sufficient conditions for optimality in
terms of extended Euler—Lagrange inclusions for Bolza-type problems with ordinary dif-
ferential inclusions and state constraints.

* A new class of optimal control problems for higher-order differential inclusions.

* Duality relations in mathematical problems with equilibrium constraints via recession
cones. Major features using the method of discrete approximation.

* Optimization of first-order discrete and partial differential inclusions. Note that one of the
characteristic features of optimization of Cauchy for first-order discrete inclusions is the
intrinsic presence of the infinite dimensional self-adjoint Hilbert space /,.

» Optimization of Darboux-type partial differential inclusions and duality.

» Optimization of elliptic, hyperbolic, and parabolic types of discrete and partial differential
inclusions and duality.

» Optimization of partial differential inclusions with a second-order elliptic operator.

* Equivalence results that facilitate making a bridge between discrete and corresponding
discrete-approximation problems.

Throughout this book, a proof is marked with an empty square [] and its end is
marked with a Halmos box, M. Since many problems in engineering reduce to
such problems, the book will be of interest to mathematicians and nonmathemati-
cian specialists whose study involves the use of ordinary and partial differential
equations (inclusions) and approximation methods and its applications, as well as
to undergraduate, graduate, and postgraduate students at universities and technical
colleges. In other words, the book is intended for a broad audience—students of
universities and colleges with comprehensive mathematical programs, engineers,
economists, and mathematicians involved in the solution of extremal problems.

Basic material has also been incorporated into many lectures given by the author at
various international conferences in London, UK; Zurich, Switzerland; and Leipzig,
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Germany, and the Banach international mathematical center in Warsaw, Poland,
during recent years.

This book includes an index of symbols and notation. Using this index, the
reader can easily find the page where some notion or notation is introduced. Our
notation and terminology are generally consistent with those used by Rockafellar,
Mordukhovich, and Pshenichnyi in their writings. For the reader’s convenience, an
introduction in each chapter of the book describes the contents and commentaries,
and outlines a selection of material that would be appropriate for the subject. This
book is also accompanied by an abundant bibliography. Parts of this book have
been used by me in teaching graduate and postgraduate students on Convex
Analysis, Optimal Control Theory, and Nonlinear Analysis and Its Applications at
Azerbaijan State University and Istanbul Technical University.

Prof. Elimhan N. Mahmudov
Baku and Istanbul
August 2011
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1 Convex Sets and Functions

1.1 Introduction

Convexity is an attractive subject to study, for many reasons; it draws upon geome-
try, analysis, linear algebra, and topology, and it has a role to play in such topics as
classical optimal control theory, game theory, linear programming, and convex pro-
gramming. Convex sets and convex functions are studied in this chapter in the set-
ting of n-dimensional Euclidean space R”. (However, if you are familiar with
functional analysis, you will be able to generalize the main results to the case of
infinite dimensional functional spaces.) These results play a decisive role in obtain-
ing the main results in the next chapters of this book. In the field of convex analy-
sis, you can consult Rockafellar [228] and Pshenichnyi [226] for related and
additional material (most of the familiar results on convex analysis presented in
this chapter are taken from Pshenichnyi [226]). The basic idea in convexity is that
a convex function on R” can be identified with a convex subset of R**!, which is
called the epigraph of the given function. This identification makes it easy to move
back and forth between geometrical and analytical approaches. It is shown that
pointwise addition of functions, pointwise supremum, and infimal convolution of
convex functions are convex, in fact, convex sets and functions are classes of
objects that are preserved under numerous operations of combination. A function is
closed if its epigraph is closed. The latter is equivalent to lower semicontinuity of
functions. This leads to the notion of the closure operation for proper convex func-
tions, which corresponds to the closure operation for epigraphs.

In Section 1.2, we study some topological properties of sets and their convex
hull, and consider how a convex set can be characterized by both Minkowski’s
method and support functions. The role of dimensionality in the generation of con-
vex hulls is explored in Carathéodory’s theorem (Theorem 1.1). It is interesting
that Theorem 1.2 (Gauss—Lucas) says that the roots of the derivative of a noncon-
stant complex polynomial belong to the convex hull of the set of roots of the poly-
nomial itself. The foundations for extremal theory are laid in the Separation
Theorems 1.5—1.7.

In Section 1.3, we discuss the convex cone, which is one of the important con-
cepts in convex analysis and extremal theory. The investigation of its properties is
connected with the calculation of the dual cone.

The cones Kj, ..., K,, are called separable if there exist not all zero vectors
x; €K}, such that x] + --- +x; =0. By Theorem 1.12, if K=K;N---NK,,, then
either K* =K} + --- + K} or the cones Kj, ..., K,, are separable. By Lemma 1.17,

Approximation and Optimization of Discrete and Differential Inclusions. DOI: 10.1016/B978-0-12-388428-2.00001-1
© 2011 Elsevier Inc. All rights reserved.
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(Kin---NKy,)*=K;j+ --- + K. But since for polyhedral cones, K + --- + K} is
also a polyhedral cone, this sum of cones is closed and the bar above it can be
removed. One of the remarkable properties of a polyhedral set is that it can be repre-
sented as a sum of polytope (polyhedron) and polyhedral cone. Conversely, the sum
of any polytope and polyhedral cone is a polyhedral set (Theorem 1.14). The reces-
sion cone of a nonempty convex set M, i.e., the set of vectors X such that M +x < M
is denoted by 0" M and for a bounded set 0" M = {0}.

In Section 1.4, we develop the main properties of convex functions. Recall that
by Definition 1.20 a function f is said to be proper, if f{x) < +oo for at least one x
and f(x) > —oo for every x. A function that is not proper is improper. It follows
from Lemma 1.24 that dom f is convex, even if f is an improper function. Besides,
an improper convex function may have a finite values only at points of the relative
boundary of dom f. The sum of proper convex functions f;, i =1, ..., m with non-
negative coefficients is convex (Lemma 1.27).

It is known that the indicator function 6y,( - ) of M is useful as a correspondence
between convex sets and convex functions. Then note that the sum of proper con-
vex functions f;, i =1, ..., m with nonnegative coefficients may not be a proper
function (Lemma 1.27). For example, for the disjoint sets M; and M,, the sum of
indicator functions 0y, + du, is identically +co.

We shall denote the gradient of f at x by f'(x) and the Hessian matrix of f at x by
f"(x), whose (i,j)th element is &*f1ox'ax’. Then if f is twice differentiable, the con-
vexity of f and the positive semidefiniteness of f”(x) are equivalent. Of course, the
latter is an important result not only in analysis but also in nonlinear programming.

Lemma 1.29 implies that properness of convex functions is not always preserved
by infimal convolution f; @ f,, which is commutative, associative, and convexity-
preserving. Indeed, if f; and f, are linear functions not equal to each other, then
their infimal convolution identically is —co.

The convex hull conv g of a nonconvex function g, defined as the greatest con-
vex function majorized by g, is used in establishing the dual problem governed by
polyhedral maps in Section 5.2. In Theorems 1.16 and 1.17, the continuity and
Lipschitz properties of convex functions are shown. By Theorem 1.18, f, a proper
convex function, is necessarily continuous on ri dom f. As is seen from this theo-
rem, a convex function is continuous in dom f and may have a point of discontinuity
only in its boundary. In order to characterize the case in which there is no such dis-
continuity, it is convenient to introduce the closure function concept (a function f is
said to be a closure if its epigraph epi fis a closed set in R"*'). By Definition 1.26,
the recession function is denoted by fO" and defined as epi (f0")=0" (epi f).
Obviously, if fis a proper convex function, then the recession function f0* of fis a
positively homogeneous proper convex function.

Section 1.5 is devoted to the conjugate of a convex function, which is one of the
basic concepts both of convex analysis and of duality theory. The definition of the
conjugate of a function grows naturally out of the fact that the epigraph of a closed
proper convex function on R” is the intersection of the closed half-spaces in R"*!
that contain it. The function defined as f*(x*) = sup,{(x,x*) —f(x)} is called the
conjugate of f. It is closed and convex. It is useful to remember, in particular, that



