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DATA MINING AND ANALYSIS

The fundamental algorithms in data mining and analysis form the basis
for the emerging field of data science, which includes automated methods
to analyze patterns and models for all kinds of data, with applications
ranging from scientific discovery to business intelligence and analytics.
This textbook for senior undergraduate and graduate data mining courses
provides a broad yet in-depth overview of data mining, integrating related
concepts from machine learning and statistics. The main parts of the
book include exploratory data analysis, pattern mining, clustering, and
classification. The book lays the basic foundations of these tasks and
also covers cutting-edge topics such as kernel methods, high-dimensional
data analysis, and complex graphs and networks. With its comprehensive
coverage, algorithmic perspective, and wealth of examples, this book
offers solid guidance in data mining for students, researchers, and
practitioners alike.

Key Features:

e Covers both core methods and cutting-edge research

e Algorithmic approach with open-source implementations

e Minimal prerequisites, as all key mathematical concepts are
presented, as is the intuition behind the formulas

e Short, self-contained chapters with class-tested examples and
exercises that allow for flexibility in designing a course and for easy
reference

e Supplementary online resource containing lecture slides, videos,
project ideas, and more

Mohammed J. Zaki is a Professor of Computer Science at Rensselaer
Polytechnic Institute, Troy, New York.

Wagner Meira Jr. is a Professor of Computer Science at Universidade
Federal de Minas Gerais, Brazil.
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Preface

This book is an outgrowth of data mining courses at Rensselaer Polytechnic Institute
(RPI) and Universidade Federal de Minas Gerais (UFMG); the RPI course has been
offered every Fall since 1998, whereas the UFMG course has been offered since
2002. Although there are several good books on data mining and related topics, we
felt that many of them are either too high-level or too advanced. Our goal was to
write an introductory text that focuses on the fundamental algorithms in data mining
and analysis. It lays the mathematical foundations for the core data mining methods,
with key concepts explained when first encountered; the book also tries to build the
intuition behind the formulas to aid understanding.

The main parts of the book include exploratory data analysis, frequent pattern
mining, clustering, and classification. The book lays the basic foundations of these
tasks, and it also covers cutting-edge topics such as kernel methods, high-dimensional
data analysis, and complex graphs and networks. It integrates concepts from related
disciplines such as machine learning and statistics and is also ideal for a course on data
analysis. Most of the prerequisite material is covered in the text, especially on linear
algebra, and probability and statistics.

The book includes many examples to illustrate the main technical concepts. It also
has end-of-chapter exercises, which have been used in class. All of the algorithms in the
book have been implemented by the authors. We suggest that readers use their favorite
data analysis and mining software to work through our examples and to implement the
algorithms we describe in text; we recommend the R software or the Python language
with its NumPy package. The datasets used and other supplementary material such
as project ideas and slides are available online at the book’s companion site and its
mirrors at RPI and UFMG:

e http://dataminingbook.info
e http://www.cs.rpi.edu/~zaki/dataminingbook
e http://www.dcc.ufmg.br/dataminingbook

Having understood the basic principles and algorithms in data mining and data
analysis, readers will be well equipped to develop their own methods or use more
advanced techniques.

ix
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Figure 0.1. Chapter dependencies

Suggested Roadmaps

The chapter dependency graph is shown in Figure 0.1. We suggest some typical
roadmaps for courses and readings based on this book. For an undergraduate-level
course, we suggest the following chapters: 1-3, 8, 10, 12-15, 17-19, and 21-22. For an
undergraduate course without exploratory data analysis, we recommend Chapters 1,
8-15,17-19, and 21-22. For a graduate course, one possibility is to quickly go over the
material in Part I or to assume it as background reading and to directly cover Chapters
9-22; the other parts of the book, namely frequent pattern mining (Part II), clustering
(Part I1I), and classification (Part IV), can be covered in any order. For a course on
data analysis the chapters covered must include 1-7, 13-14, 15 (Section 2), and 20.
Finally, for a course with an emphasis on graphs and kernels we suggest Chapters 4, 5,
7 (Sections 1-3), 11-12, 13 (Sections 1-2), 16-17, and 20-22.
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Data Mining and Analysis

Data mining is the process of discovering insightful, interesting, and novel patterns, as
well as descriptive, understandable, and predictive models from large-scale data. We
begin this chapter by looking at basic properties of data modeled as a data matrix. We
emphasize the geometric and algebraic views, as well as the probabilistic interpretation
of data. We then discuss the main data mining tasks, which span exploratory data
analysis, frequent pattern mining, clustering, and classification, laying out the roadmap
for the book.

1.1 DATA MATRIX

Data can often be represented or abstracted as an n x d data matrix, with n rows and
d columns, where rows correspond to entities in the dataset, and columns represent
attributes or properties of interest. Each row in the data matrix records the observed
attribute values for a given entity. The n x d data matrix is given as

/ X X Xd\
X1 X111 X120 Xid
D=| X2 X211 X222 - X2d
Xp Xnl  Xn2  °° Xnd

where x; denotes the ith row, which is a d-tuple given as
X; = (Xi1, X2, - - -» Xid)

and X; denotes the jth column, which is an n-tuple given as
Xp= (15X 505:5%n5)

Depending on the application domain, rows may also be referred to as entities,
instances, examples, records, transactions, objects, points, feature-vectors, tuples, and so
on. Likewise, columns may also be called attributes, properties, features, dimensions,
variables, fields, and so on. The number of instances n is referred to as the size of

1



2 Data Mining and Analysis

Table 1.1. Extract from the Iris dataset

Sepal Sepal Petal Petal Class
length width length width
X, X, X; Xy Xs
X 5.9 3.0 42 1.5 Iris-versicolor
X 6.9 3.1 4.9 1.5 Iris-versicolor
X3 6.6 2.9 4.6 1.3 Iris-versicolor
X4 4.6 32 1.4 0.2 Iris-setosa
X5 6.0 2.2 4.0 1.0 Iris-versicolor
X6 4.7 3.2 1.3 0.2 Iris-setosa
X7 6.5 3.0 5.8 2:2 Iris-virginica
Xg 5.8 2.7 5.1 1.9 Iris-virginica
X149 7.7 3.8 6.7 2.2 Iris-virginica
X150 5.1 3.4 1.5 0.2 Iris-setosa

the data, whereas the number of attributes d is called the dimensionality of the data.
The analysis of a single attribute is referred to as univariate analysis, whereas the
simultaneous analysis of two attributes is called bivariate analysis and the simultaneous
analysis of more than two attributes is called multivariate analysis.

Example 1.1. Table 1.1 shows an extract of the Iris dataset; the complete data forms
a 150 x 5 data matrix. Each entity is an Iris flower, and the attributes include sepal
length, sepal width,petal length,and petal width in centimeters, and the type
or class of the Iris flower. The first row is given as the 5-tuple

X1 =00.930.42,15,Iris-versicolor)

Not all datasets are in the form of a data matrix. For instance, more complex
datasets can be in the form of sequences (e.g., DNA and protein sequences), text,
time-series, images, audio, video, and so on, which may need special techniques for
analysis. However, in many cases even if the raw data is not a data matrix it can
usually be transformed into that form via feature extraction. For example, given a
database of images, we can create a data matrix in which rows represent images and
columns correspond to image features such as color, texture, and so on. Sometimes,
certain attributes may have special semantics associated with them requiring special
treatment. For instance, temporal or spatial attributes are often treated differently.
It is also worth noting that traditional data analysis assumes that each entity or
instance is independent. However, given the interconnected nature of the world
we live in, this assumption may not always hold. Instances may be connected to
other instances via various kinds of relationships, giving rise to a data graph, where
a node represents an entity and an edge represents the relationship between two
entities.
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1.2 ATTRIBUTES

Attributes may be classified into two main types depending on their domain, that is,
depending on the types of values they take on.

Numeric Attributes

A numeric attribute is one that has a real-valued or integer-valued domain. For
example, Age with domain(Age) = N, where N denotes the set of natural numbers
(non-negative integers), is numeric, and so is petal length in Table 1.1, with
domain(petal length) = R* (the set of all positive real numbers). Numeric attributes
that take on a finite or countably infinite set of values are called discrete, whereas those
that can take on any real value are called continuous. As a special case of discrete, if
an attribute has as its domain the set {0,1}, it is called a binary attribute. Numeric
attributes can be classified further into two types:

e [Interval-scaled: For these kinds of attributes only differences (addition or subtraction)
make sense. For example, attribute temperature measured in °C or °F is interval-scaled.
If it is 20 °C on one day and 10 °C on the following day, it is meaningful to talk about a
temperature drop of 10 °C, but it is not meaningful to say that it is twice as cold as the
previous day.

e Ratio-scaled: Here one can compute both differences as well as ratios between values.
For example, for attribute Age, we can say that someone who is 20 years old is twice as
old as someone who is 10 years old.

Categorical Attributes
A categorical attribute is one that has a set-valued domain composed of a set of
symbols. For example, Sex and Education could be categorical attributes with their

domains given as

domain(Sex) = {M, F}
domain(Education) = {HighSchool, BS, MS, PhD}

Categorical attributes may be of two types:

e Nominal: The attribute values in the domain are unordered, and thus only equality
comparisons are meaningful. That is, we can check only whether the value of the
attribute for two given instances is the same or not. For example, Sex is a nominal
attribute. Also class in Table 1.1 is a nominal attribute with domain(class) =
{iris-setosa, iris-versicolor, iris-virginica}.

e Ordinal: The attribute values are ordered, and thus both equality comparisons (is one
value equal to another?) and inequality comparisons (is one value less than or greater
than another?) are allowed, though it may not be possible to quantify the difference
between values. For example, Education is an ordinal attribute because its domain
values are ordered by increasing educational qualification.



4 Data Mining and Analysis

1.3 DATA: ALGEBRAIC AND GEOMETRIC VIEW

If the d attributes or dimensions in the data matrix D are all numeric, then each row
can be considered as a d-dimensional point:

d
X, = (X1, X2, ..., X;q) € R

or equivalently, each row may be considered as a d-dimensional column vector (all
vectors are assumed to be column vectors by default):

Xid

where T is the matrix transpose operator.

The d-dimensional Cartesian coordinate space is specified via the d unit vectors,
called the standard basis vectors, along each of the axes. The jth standard basis vector
e; is the d-dimensional unit vector whose jth component is 1 and the rest of the
components are 0

e =(0,...,1,..07"

Any other vector in R? can be written as linear combination of the standard basis
vectors. For example, each of the points x; can be written as the linear combination

d
X; =X;1€] +X;2€2 + - + X;jq€q = E Xij€;
j=1

where the scalar value x;; is the coordinate value along the jth axis or attribute.

Example 1.2. Consider the Iris data in Table 1.1. If we project the entire data
onto the first two attributes, then each row can be considered as a point or
a vector in 2-dimensional space. For example, the projection of the 5-tuple
x; = (5.9,3.0,4.2,1.5, Iris-versicolor) on the first two attributes is shown in
Figure 1.1a. Figure 1.2 shows the scatterplot of all the n» = 150 points in the
2-dimensional space spanned by the first two attributes. Likewise, Figure 1.1b shows
x; as a point and vector in 3-dimensional space, by projecting the data onto the first
three attributes. The point (5.9,3.0,4.2) can be seen as specifying the coefficients in
the linear combination of the standard basis vectors in R*:

1 0 0 3.9
xi =5.9¢e;+3.0e;+4.2¢;=5910}14+30}111+42]0}=13.0
0 0 1 4.2



