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CRYSTAL LATTICES. GENERAL THEORY

1.1 Introduction. Examples of structures _

By a solid we usually mean a substance which shows some stiffness
under shear. Normally such substances have a crystalline structure,
and, for the purposes of this book, we shall limit ourselves to crystalline
solids. This excludes glasses, and I shall not discuss the question
whether glasses should properly be regarded as solids, and which of our
results, if any, may be applicable to them.

A crystal lattice may be constructed by repeating a ‘unit cell’, which
may consist of one or more atoms, periodically. The vector leading from
a point in one unit cell to the corresponding point in another is called a
‘lattice vector’ and can be represented as a linear combination with
integral coefficients of a small number of basic lattice vectors. The set
of lattice vectors determines the ‘translation group’ of the lattice. All
lattices with the same translation group differ by having different unit
cells; the simplest of them has just one atom in the unit cell. The transla-
tion group is therefore often specified by the name of this simplest
lattice belonging to it.

I shall make no attempt to give a complete list of even the more
important types of lattices, but I shall give a few examples, which will
be used later as illustrations.

We start with cubic lattices, which are defined as remaining un-
changed if rotated by 90° about any one of three mutually perpendicular
axes. It is then clear that the basic lattice vectors can be stated most
simply in relation to these cubic axes.

(a) Simple cubic lattice. The unit cell has a single atom, the basic
lattice vectors are three vectors of equal length a in the directions of the
three cubic axes. In other words, taking Cartesian coordinates along
these axes, the basic lattice vectors are

(a, 0, 0), (0, a, 0), (0, 0, a),
the general lattice vector, and hence the position of any lattice point
relative to a given one, being
(n,@, nya, nga)

‘with arbitrary integers (positive, negative, or zero) n,, n,, ns.
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(b) Body-centred cubic lattice. One atom per unit cell. Basic lattice
vectors
(al Ol 0)1 (0) a' O)' (O’ 0) a)' (%a’ %a’ ia)

It is evident that two sector equals the sum of the other three,
go that the most general point is either

n,a, nya, nya)
or ((ny+B)a, (ny+1)a, (ny+1)a).

The first set of points forms a simple cubic lattice, the second consists
of all the centres of the cubes formed by adjacent points of the first set,
hence the name.

One can look at this lattice as having the translation group of the
simple cubic lattice, and two atoms in the unit cell, and sometimes this
may be convenient, but by doing so one obscures important relation-
ships, because it looks as if the distance between the two atoms in the
unit cell were arbitrary, whereas to preserve the cubic symmetry the
lattice must be exactly as above.

(¢) Face-centred cubic lattice. One atom per unit cell. Basic lattice
vectors

(a, 0, 0), (0, a, 0), 0,0, a), (1a, {a, 0), (3a, 0, }a).
The most, general lattice point is
(n,a, npa, nga) or ((n,+14)a, (n,+13)a, nya),
or ((ny+4)a, npa, (ng+4)a) or (nya, (ny+1)a, (ny+4)a),
or, expressed differently,
(%nl a, in2a‘» §n3a)»

with n;, n,, n, integers of which either one or all three are even, i.e.
n,+n,+ny; must be even. This lattice consists of a simple cubic one
and added to it the centres of the faces of each cube. It has the property
that, for given distance between neighbouring lattice points, the number
of lattice points per unit volume is as large as possible. It is therefore
called ‘close-packed’, because it describes an equilibrium arrangement
of hard spheres packed tightly together.

These three lattices cover all the cubic translation groups.

(d) Sitmple hexagonal lattice. One atom per unit cell. The basic lattice

vectors are two sides of an equilateral triangle, and a third vector at
right angles to the plane of the first two. In Cartesian components

(a, 0, 0), (3a, $V3a, 0), (0, 0, b).
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The ratio b/a is not restricted by the symmetry. The general lattice
point is, accordingly,

((ny+4ny)a, $vV3n,a, ngb),
or, expressed differently,
(n,.4a, n,.4v3a, nyb),

where n,, n,, n; are integers (positive, negative, or zero), such that =,
and n, are either both even or both odd.

As an important example of a unit cell containing more than one
atom, consider the NaCl type lattice. This is a simple cubic lattice in
which alternate points are occupied by positive and negative ions (e.g.
Na* and Cl-) respectively. Since these are not identical, the translation
group consists only of those displacements which lead from a positive to
another positive ion. It is easy to see that this is the translation group
of the face-centred cubic lattice, with a spacing cqual to twice that of
the simple cubic lattice occupied by all the ions together. Hence the
unit cell may be taken to consist of

one positive ion at (0, 0, 0),
one negative ion at (4a, 0, 0),

with the face-centred cubic translation group described above.
This gives the lattice sites

(3n,a, dn,a, nza) for positive ions,
(3(ny,+1)a, 4n,a, 4nya) for negative ions,

again with the restriction that n,+n,+n5 must be even. The second set
can be covered by the same formula as the first, provided we take
n,+n,+n, to be odd, and in this form it is evident that the sites of all
ions form a simple cubic lattice of spacing 4a.

Although in this case the unit cell contains two atoms, their spacing
is not arbitrary, but is related to the cubic symmetry. If the positive
ions were moved relatively to the negative ones, a structure of much lower
symmetry would result.

As a further important example, consider the hexagonal close-packed
structure. This is obtained from the simple hexagonal lattice by adding
a further plane half-way between the original triangular networks, with
lattice sites in the positions corresponding to the centres of one-half
of the original triangles.

The unit cell now consists of atoms at

(0,0,0) and (4a, }vV3a. 3h),
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so that the general lattice point becomes

(dn,a, $n,V3a, nyb) and  (¥(n,41)a, §(n,+3)V3a, (ny+4)b).
The reason for having to use a unit cell of two atoms is that the distance
between the two cannot be regarded as a lattice vector, since its repetition
does not lead to a site occupied by another atom. As before, any altera-
tion of the distance between the atoms in the unit cell, without changing
the translation group, would reduce the symmetry. However, the ratio
b/a is still arbitrary. For the particular value
bla = J§ = 1-632

each atom is surrounded by twelve neighbours at the same distance.
This again makes such a pattern suitable for packing hard spheres closely
together, the density being, in fact, the same as for the close-packed
cubic structure. This property accounts for the name of the lattice, but,
unless we are actually dealing with hard spheres, the particular value of
b/a is of no significance.

These examples may suffice to illustrate the description of lattices.
In general, we have to specify the structure of the unit cell, containing
r atoms, by listing their positions,t

d, d,..,d

relative to some origin in the unit cell, and to list the lattice vectors a,

where the suffix n stands for a set of numbers as in the examples. The
general position of a lattice point is then

d;+a,. (1.1)

Sometimes it is convenient to choose a unit cell larger than necessary,

and then to have all translation vectors equal to integral combinations
of three basic vectors, so that the lattice sites are

d;+na +nya,+n,a;, (1.2)
where the n’s are arbitrary integers. For instance, in the body-centred

cubic lattice described before, a,, a,, a, are vectors of length a in the
direction of the coordinate axes, and

dl = (Ol 01 O)v d2 == (ia, ‘ia’ %a)'

r

1.2. Dynamical problem. Adiabatic approximation

We next turn to the question of the forces which hold the atoms at
or near the sites of a regular crystal structure, and for this we first have
to find variables in terms of which the problem can be stated.

t Symbols in bold type indicate vectors or tensors.
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The atoms which constitute a solid consist of nuclei and electrons.
For a description of the state of the solid it is not, however, necessary to
specify the state of all the Z electrons of each atom, since we can eliminate
most or all of them by a principle that is familiar from the theory of
molecules.t Since the atomic nuclei are much heavier than the electrons,
they move much more slowly, and it is therefore reasonable to start
from the approximation in which they are taken to be at rest, though
not necessarily in the regular positions. Then, if we use R as a symbol
for all the position vectors of the N nuclei R, R,,..., Ry, we may imagine
the Schrodinger equation solved for the motion of n electrons, with
coordinate vectors ry, r,,..., r,, collective symbol r, in the field of the
nuclei in the configuration R. The resulting wave function will be a
function of the 3n variables r, and contain R as parameters. The energy
eigenvalue will similarly contain R as parameters. We may therefore
define the lowest energy value Ey(R) and the corresponding eigenfunction
Jo(r, R). If we now go over to the real problem in which the nuclei are
not held fixed, we may try the assumption that at any time the state of
the electrons is described by the same wave function, inserting for R the
positions of the nuclei at that time. We then merely have to describe
the state of motion of the nuclei by a wave function ¢(R), and therefore
the wave function of the whole system appears in the form

W(r, R) = ‘ﬁ(R)')l’O(r' R). (1.3)
This is known as the ‘adiabatic approximation’, since the function
Jo(r, R) represents the variation of the electronic state upon adiabatic
changes of the parameters.

The condition for (1.3) to represent a good approximation to the
solution of the complete Schrodinger equation is usually discussed in
the theory of molecules, and one knows that the condition is

Ukl € AE, (1.4)
where U is the velocity of the nuclei, % is Planck’s constant divided by 2w,
lis the distance by which the nuclei have to move to produce an appreci-
able change in y(r,R), and AE is the difference of the first excited
electron level, at fixed R, from the ground state. One verifies easily that
for the inner electrons (e.g. the K shell) this condition is always satisfied.

It may be satisfied for all electrons. This can be the case when the
solid is built of chemically saturated units. The simplest such case is
that of a solid inert gas such as He, Ne, A,..., when the right-hand side
isseveral electron volts, and the left-hand side considerably less. Another

t See, for example, Slater (1851), Appendix 18.
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typical case is that of an ionic lattice like NaCl, in which each of the
ions has again a closed-shell configuration. Another case covered by
this approximation is that of a molecular solid, like solid H,, in which
each molecule has a saturated electron configuration and a finite excita-
tion energy. A somewhat more complicated example is that of diamond,
in which the carbon atoms seem to have homopolar bonds, as in an
organic molecule, so that one may again regard the electron state as
saturated, but cannot express this in terms of small saturated sub-units.

As an example in which the adiabatic approximation is bound to fail,
consider the case of an alkali, like Na. Here each atom is unsaturated,
in the sense that it contains a free spin, which is capable of two different
orientations with the same energy. N atoms put together will therefore
have 2V states with very similar energies. (The encrgies will differ some-
what because of the interaction between the atoms, and this is a problem
which we shall discuss in detail later on.) If there are that many states
within a finite energy interval, their distances are bound to be negligibly
small, and the inequality (1.4) cannot hold.

In such cases a complete description of the state of the system must
include some electronic variables. It is sufficient, however, to include
only the outer electrons in this description. Indeed, once we take away
the valency electrons, the remaining ions will form closed shells without
degeneracy and with a finite excitation energy. We may therefore, in
general, apply the adiabatic approximation to the ions, and imagine the
system described in terms of the positions of the ions and of the valency
electrons.

In some cases the division between ion core and valency electrons
may be ambiguous, or we may be in doubt whether the adiabatic approxi-
mation is valid for the last closed shell. We may then always include the
electrons of that shell in our description, and we shall see that many
qualitative conclusions, at any rate, are not affected by this.

The division I have sketched here is, of course, precisely the division
between metals, which contain ‘free’ electrons, and non-metals, in which
all electrons are part of saturated structures. It does not, however,
follow that we can predict the nature of a solid immediately from the
properties of the atom. For example, the reasoning given above for an
alkali would not work if in fact it formed a molecular lattice. Molecular
solid Na, in which pairs of atoms form saturated units, exists no doubt in
principle, but it is less stable than the ordinary form. To be sure that
alkalis are metals we must therefore either fall back on our empirical
knowledge that in ordinary conditions they do not form molecular



