CHARACTERIZATION SERIES

C. Richard Brundle and Charles A. Evans, Jr.

材料表征原版系列丛书

金属与合金的表征

CHARACTERIZATION OF

Metals and Alloys

Paul H. Holloway P. N. Vaidyanathan

MATERIALS CHARACTERIZATION SERIES

SERIES EDITORS: C. Richard Brundle and Charles A. Evans, Jr.

材料表征原版系列丛书

金属与合金的表征

CHARACTERIZATION OF

Metals and Alloys

Paul H. Holloway P. N. Vaidyanathan

黑版贸审字08-2013-081号

Paul H.Holloway, P.N.Vaidyanathan Characterization of Metals and Alloys 9781606500477 Copyright © 2010 by Momentum Press, LLC All rights reserved.

Originally published by Momentum Press, LLC

English reprint rights arranged with Momentum Press, LLC through McGraw-Hill Education (Asia)

This edition is authorized for sale in the People's Republic of China only, excluding Hong Kong, Macao SAR and Taiwan.

本书封面贴有McGraw-Hill Education公司防伪标签,无标签者不得销售。版权所有,侵权必究。

图书在版编目(CIP)数据

金属与合金的表征:英文/(美)布伦德尔(Brundle C.R.),(美)埃文斯(Evans C.A), (美)霍罗威(Holloway P.H.)主编.一哈尔滨:哈尔滨工业大学出版社,2014.1 (材料表征原版系列丛书) ISBN 978-7-5603-4283-2

中国版本图书馆CIP数据核字(2013)第276429号

责任编辑 杨 桦 许雅莹 张秀华

出版发行 哈尔滨工业大学出版社

社 址 哈尔滨市南岗区复华四道街10号 邮编 150006

传 真 0451-86414749

网 址 http://hitpress.hit.edu.cn

印 刷 哈尔滨市石桥印务有限公司

开 本 660mm×980mm 1/16 印张 20.75

版 次 2014年1月第1版 2014年1月第1次印刷

书 号 ISBN 978-7-5603-4283-2

定 价 108.00元

CHARACTERIZATION OF METALS AND ALLOYS

EDITORS

Paul H. Holloway and P. N. Vaidyanathan

SERIES EDITORS

C. Richard Brundle and Charles A. Evans, Jr.

MATERIALS CHARACTERIZATION SERIES

Surfaces, Interfaces, Thin Films

Series Editors: C. Richard Brundle and Charles A. Evans, Jr.

Series Titles

Encyclopedia of Materials Characterization, C. Richard Brundle, Charles A. Evans, Jr., and Shaun Wilson

Characterization of Metals and Alloys, Paul H. Holloway and P.N. Vaidyanathan

Characterization of Ceramics, Ronald E. Loehman

Characterization of Polymers, Ned J. Chou, Stephen P. Kowalczyk, Ravi Saraf, and Ho-Ming Tong

Characterization in Silicon Processing, Yale Strausser

Characterization in Compound Semiconductor Processing, Yale Strausser

Characterization of Integrated Circuit Packaging Materials, Thomas M. Moore and Robert G. McKenna

Characterization of Catalytic Materials, Israel E. Wachs

Characterization of Composite Materials, Hatsuo Ishida

Characterization of Optical Materials, Gregory J. Exarhos

Characterization of Tribological Materials, William A. Glaeser

Characterization of Organic Thin Films, Abraham Ulman

The editors dedicate this book to Bette, Kim, Brian, Mike, Laura, and Kathy Holloway for their love, support, and understanding and to Mr. Narayana Iyer, Mrs. Meenakshi, and Mr. P. N. Vaidyanathan, Sr., for their inspiration, understanding, love, and support.

Preface to the Reissue of the Materials Characterization Series

The 11 volumes in the Materials Characterization Series were originally published between 1993 and 1996. They were intended to be complemented by the *Encyclopedia of Materials Characterization*, which provided a description of the analytical techniques most widely referred to in the individual volumes of the series. The individual materials characterization volumes are no longer in print, so we are reissuing them under this new imprint.

The idea of approaching materials characterization from the material user's perspective rather than the analytical expert's perspective still has great value, and though there have been advances in the materials discussed in each volume, the basic issues involved in their characterization have remained largely the same. The intent with this reissue is, first, to make the original information available once more, and then to gradually update each volume, releasing the changes as they occur by on-line subscription.

C. R. Brundle and C. A. Evans, October 2009

Preface to Series

This Materials Characterization Series attempts to address the needs of the practical materials user, with an emphasis on the newer areas of surface, interface, and thin film microcharacterization. The Series is composed of the leading volume, *Encyclopedia of Materials Characterization*, and a set of about 10 subsequent volumes concentrating on characterization of individual materials classes.

In the *Encyclopedia*, 50 brief articles (each 10 to 18 pages in length) are presented in a standard format designed for ease of reader access, with straightforward technique descriptions and examples of their practical use. In addition to the articles, there are one-page summaries for every technique, introductory summaries to groupings of related techniques, a complete glossary of acronyms, and a tabular comparison of the major features of all 50 techniques.

The 10 volumes in the Series on characterization of particular materials classes include volumes on silicon processing, metals and alloys, catalytic materials, integrated circuit packaging, etc. Characterization is approached from the materials user's point of view. Thus, in general, the format is based on properties, processing steps, materials classification, etc., rather than on a technique. The emphasis of all volumes is on surfaces, interfaces, and thin films, but the emphasis varies depending on the relative importance of these areas for the materials class concerned. Appendixes in each volume reproduce the relevant one-page summaries from the *Encyclopedia* and provide longer summaries for any techniques referred to that are not covered in the *Encyclopedia*.

The concept for the Series came from discussion with Marjan Bace of Manning Publications Company. A gap exists between the way materials characterization is often presented and the needs of a large segment of the audience—the materials user, process engineer, manager, or student. In our experience, when, at the end of talks or courses on analytical techniques, a question is asked on how a particular material (or processing) characterization problem can be addressed the answer often is that the speaker is "an expert on the technique, not the materials aspects, and does not have experience with that particular situation." This Series is an attempt to bridge this gap by approaching characterization problems from the side of the materials user rather than from that of the analytical techniques expert.

We would like to thank Marjan Bace for putting forward the original concept, Shaun Wilson of Charles Evans and Associates and Yale Strausser of Surface Science Laboratories for help in further defining the Series, and the Editors of all the individual volumes for their efforts to produce practical, materials user based volumes.

C. R. Brundle C. A. Evans, Jr.

Preface to the Reissue of Characterization of Metals and Alloys

This volume consists of ten chapters from experts in academia (four authors), government institutions (three authors), and from industry (four authors), with two of the authors acting as editors to keep the material cohesive. The emphasis is on understanding how the microstructure of metals and alloys affects their properties, and specifically on the importance of effects at external and internal surfaces (grain boundaries). Characterization of these chemical and physical effects, and the analytical approaches for this, make up the majority of the chapters, covering areas ranging from the original mineral processing through to the use of metals and alloys in thin films. Though there have been incremental advances in many of the analytical techniques used since the original publication of the volume, the basics of the metallurgical information and the application of the analytical approaches discussed remain valid. Following reissue of the volume, in close to its original form, it is our intention to release updates and new material, as online downloads, as they become available.

C. R. Brundle and C. A. Evans, March 2010

Preface

This book resulted from the efforts of a number of people. The idea was introduced to the editors by Marjan Bace of Manning Publications. He provided encouragement to see the volume through to completion. This was accomplished on a more frequent basis (sometimes daily) by Lee Fitzpatrick, also of Manning Publications. Encouragement and assistance for the style and content was given by one of the series editors, C. Richard "Dick" Brundle. The form of the book took place under the watchful eye of the editorial staff at Butterworth-Heinemann Publishing.

We were supported in our efforts by our colleagues and associates in the Department of Materials Science and Engineering at the University of Florida. In particular, Ms. Ludie Hampton worked tirelessly in support of the book. Finally, the people doing the majority of the work were the authors of the chapters. Without their expertise and efforts, the book would not exist or would be worthless. To all of these persons, we say a heartfelt "thank you" for making the project a success.

Paul Holloway P. N. Vaidyanathan

Acronyms Glossary

AED Auger Electron Diffraction
AES Auger Electron Spectroscopy
CL Cathodoluminescence
DR Differential Reflectometry

EDS, EDX Energy-Dispersive X-ray Spectroscopy
EELS Electron Energy-Loss Spectroscopy
EPMA, EMP Electron Probe X-ray Microanalysis

ERS Elastic Recoil Spectrometry

EXAFS Extended X-ray Absorption Fine Structure

FIM Field Ion Microscopy

FTIR Fourier Transform Infrared Spectroscopy
GDMS Glow-Discharge Mass Spectrometry

HREELS High-Resolution Electron Energy Loss Spectroscopy ICPMS Inductively Coupled Plasma Mass Spectrometry

ICP-OES Inductively Coupled Plasma-Optical Emission Spectroscopy

IR Infrared Reflection/Absorption Spectroscopy

ISS Ion Scattering Spectroscopy
LEED Low-Energy Electron Diffraction
LEEM Low-Energy Electron Microscopy
LIMS Laser Ionization Mass Spectrometry
MEIS Medium-Energy Ion Scattering
MOKE Magneto-Optic Kerr Effect
NAA Neutron Activation Analysis

NEXAFS Near Edge X-ray Absorption Fine Structure

NMR Nuclear Magnetic Resonance
NRA Nuclear Reaction Analysis
OMR Optical Micro-Reflectometry
PAS Photoacoustic Spectroscopy

PEEM Photoelectron Emission Microscopy
PIXE Particle-Induced X-ray Emission

PL Photoluminescence

RBS Rutherford Backscattering Spectrometry
REELS Reflected Electron Energy-Loss Spectroscopy
RHEED Reflection High-Energy Electron Diffraction

SALI Surface Analysis by Laser Ionization SEM Scanning Electron Microscopy

SERS Surface Enhanced Raman Spectroscopy

SEXAFS Surface Extended X-ray Absorption Fine Structure

SFM Scanning Force Microscopy
SHG Second Harmonic Generation

SIMS Secondary Ion Mass Spectrometry (Static and Dynamic)

SNMS Sputtered Neutral Mass Spectrometry
SSMS Spark Source Mass Spectrometry

STEM Scanning Transmission Electron Microscopy

STM Scanning Tunneling Microscopy
TEM Transmission Electron Microscopy
TPD Temperature Programmed Desorption

TXRF Total Reflection X-ray Fluorescence Analysis
UPS Ultraviolet Photoelectron Spectroscopy
VASE Variable-Angle Spectroscopic Ellipsometry

XPD X-ray Photoelectron Diffraction XPS X-ray Photoelectron Spectroscopy

XRD X-ray Diffraction XRF X-ray Fluorescence

XRS X-ray Spectrometry (also known as EDS or EDX)

Contributors

Charles R. Anderson

Martin Marietta Laboratories

Baltimore, MD

Donald R. Baer

Battelle Northwest Laboratories

Richland, WA

Clyde L. Briant

General Electric Company

Schenectady, NY

Jean-Luc Cecile

Bureau de Recherches Géologiques

et Minières

Orleans, France

Paul H. Holloway University of Florida

Director, MICROFABRITECH

Gainesville, FL

Paul A. Lindfors

Mankato State University

Mankato, MN

Guy Remond

Bureau de Recherches Géologiques

et Minières

Orléans, France

Ronald F. Roberts

AT&T Bell Laboratories

Princeton, NJ

David A. Stout

Kalamazoo College

Kalamazoo, MI

Brian R. Strohmeier

Aluminum Company of America,

Surface Technology Division

Alcoa Center, PA

P. N. Vaidyanathan

University of Florida

Associate Director, MICROFABRITECH

Gainesville, FL

Failure Analysis

Chemical Properties

Mechanical Properties and Interfacial

Analysis

Mineral Processing and Metal

Reclamation

Introduction; Surface and Thin Film Analysis of Diffusion in Metals; Coatings

and Thin Films

Characterization of the Cleaning of

Surfaces of Metals and Metal Alloys

Mineral Processing and Metal

Reclamation

Coatings and Thin Films

Machining and Working of Metals

Melting and Casting

Introduction

Contents

Preface to the Reissue of the Materials Characterization Series xii

Preface to Series xiii

Preface to the Reissue of Characterization of Metals and Alloys xiv

Preface xv

Acronyms Glossary xvi

Contributors xviii

INTRODUCTION

1.1 Purpose and Organization of the Book 1

MECHANICAL PROPERTIES AND INTERFACIAL ANALYSIS

- 2.1 Introduction 4
- 2.2 Grain Boundary Segregation 6
- 2.3 Temper Embrittlement 8
- 2.4 Corrosion and Stress Corrosion Cracking 12
- 2.5 Hydrogen Embrittlement 17
- 2.6 Creep Embrittlement 19
- 2.7 Future Directions 20

CHEMICAL PROPERTIES

- 3.1 Introduction 24
- 3.2 Tools of the Trade—Unique Information Available 25
 X-ray Photoelectron Spectroscopy (XPS) 25, Auger Electron
 Spectroscopy (AES) 29, Secondary Ion Mass Spectrometry (SIMS) 31,
 Rutherford Backscateering Spectroscopy (RBS), Nuclear Reaction Analysis (NRA),
 and Ion Channeling 32, Other Methods 32
- Gaseous Corrosion 33
 High Temperature Corrosion—Influence of Alloy Additions and Coatings 34

- 3.4 Aqueous Corrosion 38
 Intergranular Stress Corrosion Cracking 39, Pit Formation 40
- 3.5 Surface Electronic Structure and Chemistry 41
- 3.6 Surface Modification 44
- 3.7 Summary 45

SURFACE AND THIN FILM ANALYSIS OF DIFFUSION IN METALS

- 4.1 Introduction 51
- 4.2 The Mathematics of Diffusion 52
- 4.3 Effects of Non-Uniform Cross Sections 53
- 4.4 Effects of Finite Thickness 54
- 4.5 Analysis Techniques for Diffusion 56
- Case Studies of Diffusion 60
 Diffusion in Bulk Samples 60, Diffusion in Thin Films 64,
 Analysis of Surface Diffusion 71
- **4.7** Summary 71

MINERAL PROCESSING AND METAL RECLAMATION

- 5.1 Introduction 74
- Techniques for Mineral Surface Characterization 75
 Direct Analysis of Solid Surfaces of Particles in a Fluid 75,
 Surface Characterization of Mineral Particles Separated from the Processing Fluid 78
- 5.3 Surface Bonding in Mineral–Fluid Systems 82
 Oxide Mineral Surfaces 82, Sulfide Mineral Surfaces 83
- 5.4 Complementary Composition Analyses of Rough and Polished Surfaces 85
- **5.5** Summary 88

MELTING AND CASTING

- 6.1 Introduction 92
- 6.2 Aluminum-Lithium Alloys 94
- **6.3** Aluminum–Magnesium Alloys 97
- 6.4 Rapidly Solidified Aluminum Alloy Powders 100
- 6.5 Cast Aluminum Alloy Metal Matrix Composites 102

- 6.6 Liquid Aluminum Alloys 104
- **6.7** Summary 105

MACHINING AND WORKING OF METALS

- 7.1 Introduction 108
- 7.2 Physical and Chemical Characterization 109 Physical Properties 109, Chemical Properties 110
- 7.3 Lubrication 112
- 7.4 Surface Finish 114
- 7.5 Metalworking Example 119
- **7.6** Summary 123

CHARACTERIZATION OF THE CLEANING OF SURFACES OF METALS AND METAL ALLOYS

- 8.1 Introduction 125
- 8.2 Characterization of Cleaning Procedures 126 Mechanical Cleaning 132, Chemical Cleaning 133, Cleaning in a Vacuum Chamber 136, Detection of Hydrogen and Miscellaneous Cleaning 138
- 8.3 Specimen Handling and Interpretation of Data 138
- 8.4 Summary 140

COATINGS AND THIN FILMS

- 9.1 Introduction 144
- 9.2 Techniques for Creating Coatings and Thin Films 145
 Deposition Techniques 146, Thick Film Coatings 151,
 Ion Implantation 152, Surface Segregation 152,
 Thin Film Structures 153
- 9.3 Techniques to Characterize Coatings and Thin Films 153
- 9.4 Studies of Coatings on Metals 155
 Polymeric Coatings 155, Tribological Coatings 160,
 Passivating Coatings 166, Optical and Thermal Coatings 168,
 Electrodeposition 170, Surface Modifications by Ion
 Implantation 171, Biocoatings 173
- 9.5 Studies of Thin Films on Metals 173
 Metal Thin Films 174, Semiconductor Thin Films 176, Oxide Thin Films 177, Ceramic Thin Films 179, Carbon-Based Thin Films 180
- 9.6 Summary 182