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PREFACE

The purpose of this book is to bring together for explanation and evalua-
tion the variety of working formulas called upon in applying tracer methods
for kinetic studies in vivo. Examination reveals that many formulations, in
what at first glance may appear a confusing array, in reality rest upon rela-
tively few related basic concepts, even though the intended use may be for
such dissimilar purposes as measurement of cardiac output or estimation of
rate of production of a hormone. Readers encountering the wide range of
formulas expressed in varying terms and symbols may, understandably, fall
victim to a sense of confusion bordering on disenchantment or, at the least,
be reduced to uneasy acceptance, on faith, of mathematical development and
argument. In order to alleviate this confusion we define the basic concepts,
derive the pertinent equations, and evaluate each working formula to ensure
its proper application within the set of experimental conditions at hand.
Included is an appraisal of inherent potential sources of error encountered in
the various applications.

In the interest of the biomedical scientist who as often as not may be
uncomfortable when confronted with involved algebra, let alone calculus, we
have attempted to maintain as simple and informal an approach as possible
in deriving equations. Rigorous and complex qualifying generalities with
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attending proliferation of symbols have been avoided when the practical
purpose—an orderly and straightforward development—is not compromised.
We believe that nonmathematicians should welcome such an explanation of
concepts supporting various formulations and also appreciate the simple
representative numerical examples which are included. Many of the sequences
of steps included in the text, whether algebraic or numerical, would ordinarily
be omitted from research reports or mathematical treatises; yet we feel certain
that many manipulations which are perhaps inelegant and obvious to mathe-
maticians may be helpful to others. In this spirit they are retained here.

Although considerable attention is given stochastic or probabalistic
methods as applied to *“ black box ™ systems, explicit compartmental models
are regularly invoked if for no other reason than to illustrate working for-
mulas in a tangible context and to provide a framework for illustrative
arithmetic. We believe that the generous assortment of model systems depicted
in the illustrations will assist in the understanding of concepts which may be
elusive if sole reliance is placed on abstract mathematical argument.



LIST OF SYMBOLS

a; b, ¢, d, ete.

o (alpha)

Cas Cys RLC:

Ca0

Area under a curve for a given function from ¢, to ¢, , or
o0

t=01tot =00, e.g, f f(1)dt.
0

Designation of specific pools, usually as subscripts. Pool a
ordinarily is the labeled pool and the others are secondary
pools. Where double labeling requires that other pools
also be labeled, this is noted in the text.

Specific activity of pooled excreted material collected over
a period of time sufficiently long to permit recovery of
nearly all tracer destined to leave by this route.

A constant (except electric capacitance (Chapter 4)).

A general symbol for concentration in water (e.g., blood
or plasma) or in tissue. As indicated in the text it may
apply to either solute (tracee) or tracer. In case both
types of concentration appear in the same formula, that
for tracer is designated ¢’, ¢,’, etc. The symbol ¢ usually
appears with a subscript. See the next four entries.
Concentration in pool a, pool b, etc.

Concentration in pool a at zero time.
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Xii
¢’ ¢, ete.

Cas Cy

Cl

D
D*, D
At (delta 1)

By o Fours Py €1C.

oa’ ao>

91,92 etc.

H,, H, , etc.

K, K, ; etc.

k

Kias Kpe » €tC.

LIST OF SYMBOLS

Concentration of tracer in pool b when dose was to pool
a; in pool a when dose was to pool b, etc.

Concentration of tracer in arterial or in venous blood,
respectively.

Clearance, expressed as volume nominally cleared of
solute per unit time. Cl" is used for clearance of tracer
when that for solute appears in the same formula.

Total activity in a single dose of tracer.

Dose to pool a, dose to pool b.

A very small interval of time approaching zero duration.
Irreversible disposal rate of a particular species from a
system, e.g., DR, is disposal rate of species a.

Subscript denoting equilibrium.

Electric charge, Chapter 4.

Natural log base.

Rate of transfer (flow) of unlabeled material, e.g., in
milliliters per minute or milligrams per minute.

Rate of transfer to pool b from a; to the outside of the
system from pool a; to pool a from the outside, etc.
Rate of blood flow as milliliters per gram of tissue.
Any mathematical function of the independent variable, .
Separate exponential slopes comprising a complex
exponential curve.

Coefficients (intercepts) of the separate terms of a com-
plex exponential curve from the labeled pool after
observed intercepts (I) are normalized in terms of
fraction of their total. Example H, = I,/(I; + I, + - 1,).
Transport function: Fraction of dose of tracer lost from a
system per unit time as a function of time.

An intercept of an extrapolated slope of a complex
exponential curve. It also is one of the coefficients in the
equation for the curve.

Subscripts of generality, e.g., 4, means any given area;
F;; means the rate of movement to any pool, i, from any
pool, j.

Coefficients (intercepts) of the separate terms of the
complex exponential curve for quantity of tracer in pool b
when amount is expressed as fraction of dose to labeled
pool a.

A rate constant of transfer from a pool in terms of
fraction of total content moving per unit time.

See F for definition of subscripts.



K5 Kopp s €tC:
Ly, Ly, cte:
In

Z{}

/. (lambda)
M, M, , etc.

m
N,orn

p
q

.- qp» €tC.
qa()

g, g, etc.

T
Ty,

LIST OF SYMBOLS Xiii

Sum of all rate constants of output from pool a, pool b,
etc.

Coeflicients for curve from pool ¢ (as defined for pool b).
Log to the base e.

A Laplace transform.

Partition coefficient for a gas: quantity per gram of tissue
versus quantity per milliliter of blood.

Coefficients for a curve from pool d (as defined for
pool b).

Mass (weight) of tissue.

Any integer such as the nth member of a series, or the
number in a series.

Subscript denoting zero time, e.g., t, ; ¢, is quantity of
tracer in pool a at zero time.

Outside the system, e.g., F,, is rate of transfer of tracee to
pool a from the outside.

Quantity of tracer in a priming dose preceding constant
infusion.

Production rate of a specific species, e.g., PR, is produc-
tion rate of species a (new to the system).

A “dummy variable” in a Laplace transform.

Quantity of tracer, e.g., counts per minute in a pool or
specified space denoted by subscript.

Quantity of tracer in pool a, pool b, etc.

Quantity of tracer present in pool a at zero time. (Numeri-
cally the same as D introduced to pool a.)

Quantity of tracer in pool 4 when a single dose was
introduced to pool a; quantity of tracer in pool @ when
dose was to pool b, etc.

Quantity of unlabeled material (tracee) in a pool or
space, e.g., Q, is quantity in pool a.

Reading of a radiation detector. (Also electrical resistance,
Chapter 4).

Rate of movement (or infusion) of tracer as units per
unit time.

Probability function of arrival time of tracer.

Specific activity as units of tracer per unit weight of
natural atoms of the same species.

SA of pool a, etc.

A specific interval of time.

Half time. Time required for ¢ or SA to decline by half
when the curve is of simple exponential type.



Xxiv

mean

O

tmEIX

7 (tau)

o (omega)

X, Y, Z

xy or (x)(y)
or [x][y]
or X 3

!

LIST OF SYMBOLS

Mean time, e.g., mean time for loss of tracer.

Time, as an independent variable; a specific point in time.
A “function of time,” e.g., g,(t) is amount of radio-
activity in pool a (dependent variable) as a function of
time (independent variable). (Frequently omitted when a
variable is obviously a function of time.)

Zero time.

Point in time where a curve is at maximum height.

A time interval on a special subscale in the convolution
integral (Chapter 12).

A complex denominator of specified constants.

Units of liquid volume.

Subscript (e.g., 1, , g, denoting a value at a point in time
terminating an interval during which observations are
made).

Variables as defined when used.

At infinite time.

Operator Signs

Approximately equal to.

Summation of.

x multiplied by y, except that (¢) is always ““as a function
of time” and (¢ — 7) is ““as a function of t — 7.”

Factorial. For example 3!is3-2-1,and 4!is4-3-2- 1.
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CHAPTER 1

COMPARTMENT ANALYSIS: A SINGLE POOL, REAL OR BY LUMPING

Compartments or Pools

1. Tracers such as radioactive atoms are assumed to behave chemically
and physiologically exactly like their natural counterpart atoms save for slight
effects of difference in mass. Because the dose can be very small in terms of
the number of existing natural atoms, the added material does not perturb
the system under observation. Tracers have several potential uses in the
intact animal. One of these is to study pathways of chemical conversion by
identifying tracer in product after introduction into a precursor. If such a
pathway is already known, tracer may serve to assess rate of conversion.
The animal body may be viewed as an assortment of pools or compartments
each made up of identical molecules which tend, more or less, to be enclosed
by anatomic boundaries. For example, glucose resides for the most part in
extracellular fluid. Body pools tend to remain constant in size while under-
going replacement by input equal to output. This dynamic equilibrium is
known as steady state. Such a state will be assumed for all analyses presented
in this book unless otherwise noted. (See Chapter 10 for nonsteady state
and more explicit definitions.) Compartment analysis is based on the assump-
tion that specific pools can be identified and that discharge of tracer therefrom
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2 1 COMPARTMENT ANALYSIS: SINGLE POOL

can be described by exponential equations. Tracer can be delivered to
a pool system as a single, abruptly administered dose, or delivered over an
extended period as by continuous infusion at a constant rate. For compart-
ment analysis the single dose technique is the most useful. Except in Chapter 9
and where otherwise noted the analytic approach will be that for a single dose.
2. In addition to measuring rates of chemical transfer or of physical trans-
port such as blood flow or molecular diffusion, compartment analysis also is
concerned with assessment of pool size, i.e., the mass of natural material (or
volume where appropriate) which constitutes the pool. A very important
concept is that of rate of fractional loss from a pool. The fraction of tracer
lost per unit time is known as a fractional rate constant or rate constant.
If glucose is assumed to constitute a body pool and this pool is labeled with
14C-glucose given as a single dose intravenously, then a curve of specific
activity (SA) as units of radioactivity per milligram of glucose carbon is
plotted against time, how can this SA curve of declining activity be used to
measure the rate constant of glucose loss or the rate of loss (and replacement)
as milligrams per minute ? What is the weight of glucose carbon in the pool?
In the sections which follow, these questions will be considered for a pure
single pool of homogeneous atoms. A pure single pool means that a specifically
defined compartment has no side connections to other pools which participate
in interchange of tracer with the pool under observation. The truth is that no
such pool exists in the animal body, although a compromise sometimes will
permit this assumption in a specific instance. In any case, single-pool kinetics
must be understood before more complex systems can be examined.

Single-Pool Kinetics

RATE VERSUS RATE CONSTANT
Natural (tracee) atoms and rate constant

3. A pool of fluid (Figure 1A) will serve as the first illustration. It has a fixed
volume (V) of 100 ml and inflow—outflow rate (¥) of 50 ml/min. By definition,
rate is units of volume moving per unit time, but the kinetic behavior of the
system also may be assessed in another sense. What fraction of the content of
the pool is being replaced per unit time? In one minute this obviously is
50 ml/100 ml or 50 %/min. Such fractional loss is known as a rate constant.
The rate constant is 0.5 (or more explicitly 0.5/min or 0.5 min~!). It will be
assigned the symbol k. Thus in a pool of liquid undergoing volume flow,

k=FV (1a)

Figure 1B is strictly comparable to A save that it represents mass rather than
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volume. Thus size (Q) is in mass units (here milligrams), and F now represents
input-output rate in milligrams per minute. The rate constant now is fraction
of 100 mg removed (and replaced) per minute,

k=F|Q (1b)

If multiple exits should exist (Figure 1C) each will have a separate k value,
and the rate constant for the pool as a whole will be the sum of all rate constants.

® ©
Fy=30mg/min
vV =100ml Q=100mg Q =100mg |[—
k1=0.3
I Total k=05
F=50ml/min F=50 mg/min F2 =20 mg/min
k =05 k=05 ky = 02

FiG. 1. Single pool systems wherein F is input-output rate, and k is the output rate
constant. Model A is for liquid comprising volume, ¥, and B and C are for mass comprising
weight, Q.

Tracer atoms and rate constant

4. One prime purpose of the tracer method is to calculate a flow rate when
it cannot be measured directly. If the rate constant is known, this rate is
calculable via a rearrangement of Eqs. (1a) and (1b). For mass,

F=kQ (2a)
or, if size is to be calculated,
0 = Flk (2b)

Consider that the purpose of adding tracer to the pool is to determine k.
Tracer is assumed to mix with tracee almost instantaneously and remain
continually mixed. Consequently, probability dictates that during any given
time the chance of loss of a tracer atom at the site of output is the same as that
for an unlabeled (tracee) atom. Therefore one may predict that loss of tracer
should be 50 9(/min, and that the rate constant for tracer should be 0.5, as was
the case for tracee atoms. But, as an experiment, add 1000 units of tracer to
the pool. The initial concentration is 10 units per milliliter. At one minute the
content of tracer will be 600 and its concentration 6. This is a 409, decline
per minute rather than the 509 as predicted for accompanying tracee by
Eq. (1a). The discrepancy arises because in one instance the fraction lost is the
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ratio of amount lost to a fixed amount of tracee during one minute, whereas
for tracer the reference amount progressively declines. The true value for
fraction lost per unit time can be approached arithmetically by making the time
so short that the reference value undergoes minimal change. A general
expression for estimation of such fractional rate of loss is

estimate of k =~ @o;tCI)/q_o 3)
The symbol g, is starting amount of tracer in the pool at zero time, and q is
the amount observed later at time ¢. Direct measurement would give the
following for expression (3):

t q k
0 1000 -
1 607 0.39
0.5 778 0.45
0.2 905 0.48
0.1 951 0.49

The approached limit of 0.5 is predicted directly by the calculus of Appendix I,
which leads to the following equation for the time curve for quantity :t

g=gqe or q= De ™™ (4a)

At the beginning the amount in the pool (g,) is the whole dose (D). The
symbol e is the base for natural logarithms. Equation (4a) is converted
to one for concentration (c) simply by dividing by the constant volume (V)
to give units of tracer per milliliter,

9 4do _y —kt

2. i p of &= &se 4b
=7 0 (4b)
Likewise, if pool units are for mass, a division by weight of contained material
(Q) converts total units present to units per milligram, i.e., specific activity
(SA):

% T ,-u o SA=SAge ™ (40)

t A more formal notation would be

kt

q(1) =qoe~

The parenthetic 7 means ““ as a function of time.” To keep clutter to a minimum, it will be
omitted in this chapter when ¢ is obviously the independent variable.



