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PREFACE

The Four Sfudents: A Math Methods Parable

The professor has just finished a first-semester lecture on definite integrals, possibly unaware
that four different types of students are processing the information quite differently. The
class comprises aspiring physicists, aspiring engineers, aspiring mathematicians, and bad students.

« The aspiring physicists are thinking, “Why does subtracting an antiderivative over here
from an antiderivative over there give you the area under this curve?”

» The aspiring engineers are thinking, “Of what possible practical value is finding the
area under a curve?”

» The aspiring mathematicians are thinking, “How can you claim to have found anything
when you haven’t rigorously defined ‘area under a curve’ in the first place?”

o The bad students are thinking, “Just tell me how to do the problems and get the answer
you want on the test.”

This book is written for aspiring physicists and engineers. For each topic, we hope to
clearly answer the questions “Why does this mathematical technique work?” and “How is this
used to solve practical problems?” We will fall short of the expectations of true mathemati-
cians, and we hope to continually frustrate the bad students.

Exercises

In almost every section of our book you will find an “Exercise” and a set of “Problems.” What’s
the difference?

The simple answer is that the Problems are, for the most part, independent of each other.
You create an assignment that says “Do Section 18.3 Problems 2, 5,9, 12, and 20.” By contrast,
an Exercise is an atomic block. You can assign a particular exercise, or you can skip that
exercise, but you can’t assign “Question 5” from the exercise because it only makes sense in
context.

More importantly, the two serve different purposes. Problems are meant to follow a
lecture, building and testing the students’ skills and understanding of the topics you have
discussed in class. Exercises are designed to facilitate active learning.

There are two types of exercises.

Motivating Exercises come at the beginning of each chapter. Their purpose is not to teach
math, but to give a practical example of why the student needs the techniques in this chapter.

Discovery Exercises come at the beginning of (almost) every section. Their purpose is to step
the student through a mathematical process, such as solving a differential equation or find-
ing a Taylor series. Instead of just being told how to do it, the students do it for themselves.

Some frequently asked questions:

e Do I need to assign all the exercises? No. If you are uncomfortable with the process, you
may want to try only one or two. We hope you will find them easy to use and valuable,
and over time you will use them more, but you will probably never use them all.
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» At home or in class? Alone or in groups? Mix it up. See what works for you. We some-
times assign them as homework due on the day we are going to cover the material,
and sometimes as an in-class exercise to begin the lecture. You can have students do
them individually or in groups, or a mix of the two. One professor we spoke to starts
them in class, and then has her students finish them at home—an approach we never
even thought of. You will probably keep your students’ interest better if you vary your
approach.

o How long do they take? Some are five minutes or less; some are twenty minutes or even
more. Very few of them should take the students more than half an hour.

o That was all pretty noncommittal. Do you have any solid advice at all? Actually, we do. First,
we hope you will use at least some of the exercises, because we believe they contribute
avaluable part of the learning process. Second, exercises should almost always be used
before you introduce a particular topic—not as a follow-up. You can start your lecture
by taking questions and finding out where the students got stuck.

Problems

There are problems at the end of every section, and there are also “additional problems” at
the end of every chapter. The “additional problems” give us an opportunity to ask questions
where the students don’t know exactly what’s being covered. (When you look at a partial
differential equation in “additional problems” you have to ask yourself: separation of vari-
ables? Method of transforms? What'’s the right approach here?)

We have resisted classifying the problems further, but you will find a general pattern some-
thing like this.

e A “walk-through” steps the students carefully through the process we want them to
learn. We advise you to generally assign these problems.

e Next often comes a batch of straightforward, unmotivated calculation problems.
“Evaluate the following triple integrals in spherical coordinates.” They will generally
move from easier to harder.

e Then come word problems. Some of these are practical applications; some fill in details
that were left out of the explanation; some are just cool ideas that occurred to us while
we were brainstorming over Bailey’s Irish Cream.

« Finally, in some cases, there are “Explorations.” These are harder, more involved, and
often longer problems that may stretch beyond the presented material.

Problems withouta computericon (which are most of them) can be done entirely by hand,
and should generally require no integration technique beyond u-substitution or integration
by parts. A computer icon can mean anything from “This requires an integral that you can
do on your calculator” to “This involves heavy use of a computer algebra program such as
Mathematica, MATLAB, or Maple.” The problems are written in a platform-independent
way, and we provide no instruction on any of these computer tools in particular.

Chapter Order and Dependencies

One of the unusual things about Math Methods, as a course, is that it covers a broad variety
of loosely (if at all) related topics. It can be taught as a sophomore level course with only
two semesters of calculus as a prerequisite (so half the course becomes an introduction to
multivariate calculus), or it can be taught as a first-year graduate-level course, or anything in
between. It is taught in physics departments, engineering departments, economics depart-
ments, and occasionally math departments. All those different courses cover different topics.
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So the textbook becomes what Stuart Johnson, our first editor at Wiley, called a “Chinese
menu.” You look it over and you decide you want this chapter, that chapter, skip three and
pick up this one, and so on.

For this reason, we have endeavored as much as possible to make the chapters indepen-
dent of each other. You don’t need our vector calculus chapter to cover our linear algebra
chapter, or vice versa. References from one section to another within a chapter are common;
references from one chapter to another are rare.

That being said, there are exceptions. Most importantly, pretty much every chapter in
the book relies on the information presented in Chapter 1, Introduction to Ordinary Dif-
ferential Equations. The information is minimal: most of the techniques for solving ODEs
are deferred to later chapters. But the students have to know what a differential equation is,
whether they get it from our chapter or somewhere else. If you are not sure your students
come into the course highly comfortable with this material, please start with this chapter
before doing anything else. If you want to give it the most minimal treatment possibly, you
can get away with doing the three sections “Overview of Differential Equations,” “Arbitrary
Constants,” and “Guess and Check, and Linear Superposition” only. We believe strongly,
however, that it is worth your class time to do more.

Beyond that, the first page of every chapter lists prerequisites. You should be able to use
that to make sure your students are ready for any given chapter.

Last Word: Communicating Priorities
to Students

Here is an experience that took me (Kenny) quite by surprise. I assigned the following prob-

« . . . . i .
lem. “Write the Maclaurin series expansion of ¢~*"; then use the first five terms of that series
1

to approximate [ e dx.” Many students came back saying “I had no trouble finding the

Maclaurin series(,) but I didn’t understand what you were asking me to do with it.”

Just in case you're staring at that sentence with the same dumbstruck look I probably
had, I want to stress that these were not weak students, and they did know how to integrate
a polynomial.

And here’s my point. We don’t just want our students to learn methods; we want them
to understand why those methods work, to view those methods in a larger mathematical
context, and to be able to apply those methods to physical problems. But students don’t
develop those skills by being told “You should be able to think for yourself.” They develop
those skills, just like any others, with practice and feedback. This is particularly relevant for
Math Methods, where the skill and the application may be separated by semesters or years.
(“What do you mean, quantum mechanics students, you've never heard of a Fourier series?
Didn’t you take Math Methods?”)

Everything in our book is structured to give your students that practice. A discovery
exercise says “Don’t just listen to me lecture about this; figure it out for yourself.” A
walk-through says “Let me help you with that important process.” The problem after the
walk-through, or the later problems in the section, often say “Let’s think more deeply
about that result” or “Let’s see where that came from” or “Let’s apply that technique to a
circuit.” If the explanation stepped through a particularly important derivation that you
want your students to understand, there are almost certain to be some problems designed
to make sure students followed the derivation. Give your students enough problems to
master specific skills—evaluating a line integral, separating variables in a PDE, finding the
coefficients in a Fourier series—but assign deeper problems in areas where you want deeper
understanding.
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Here is a specific example. In the section on Legendre polynomials in the special func-
tions chapter, one problem steps the students through the solution of Hermite’s differential
equation. If you just want your students to be able to work with Legendre polynomials, you
can certainly skip that problem. But if you want your students to follow the derivation of the
Legendre polynomials, that problem will force them through every step of the process.

That brings up the more general topic of proofs. It’s very rare for our book to prove a
theorem before we use it. Much more commonly we present a theorem, show students how
to use it, and then step them through the proof in a problem. The explanation will usually
point to that problem with language such as “You’ll show that this always works in Problem
14.” In some cases the problem doesn’t prove the theorem, but has the students show that it
works for some important cases.

There are two reasons for this unusual structure. First, we believe students follow a
proof better after they understand the result that is being proven. Second, we believe very
strongly that students follow a proof better if they work through it themselves instead of just
reading it.

One of the judgment calls you will have to make, therefore, is which of these proof
problems to assign. Our own opinion on this matter, for whatever that’s worth, is that the
importance of a proof is not based on the importance of the result it proves, but on the
technique that the proof demonstrates. It’s tremendously important for all students to know
that the derivative of sin x is cos x, but very few students can prove it—and that’s OK. On the

L
other hand, the proof that a, = % | f(x)cos ("I—”x)dx in a Fourier series involves an impor-
! 2

tant trick that teaches students what orthogonal functions are and how to find the coefficients
of many other such series, so it’s worth some investment of class and homework time.

The Most Important Thing We Want to Tell You
Please see http://www.felderbooks.com for all the information you will find in
this introduction, exercises formatted for printing, additional problems for every chapter,
additional sections including “special applications,” answers to odd-numbered problems,
and a lot more.
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