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Preface

The purpose of this book is to describe the concepts and methods, and to
introduce some of the central problems of the quantum theory of solids.
It should be suitable as a textbook for students who have completed a one-
year course in quantum mechanics and have some familiarity with the
experimental facts of solid state physics. It should also be useful as a refer-
ence work. I have attempted a moderately comprehensive coverage: The
physics of solids is, in fact, a rather diverse subject.

A book with these aims must develop both principles and mathematical
techniques; in addition, it should assist the reader in making his way
through the more specialized periodical literature. To this end, fairly
lengthy bibliographies have been included at the end of each chapter,
although these are not intended to be complete in any area. If these refer-
ences are used in conjunction with the Science Citation Index, it should
be possible: to follow many specific subjects to the frontier of present
research.

This work is intended to be a single intellectual unit, although for reasons
of convenience it has been divided into two parts. Part A contains much of
the formalism required for the theoretical study of solids; Part B is'oriented
toward more specific problems. Thus, Part A includes phenomenological
treatments of lattice vibrations and magnetic order, a discussion of sym-
metry groups, and a description of the properties of one-electron wave
functions and the principal techniques for calculating energy levels. In
Part B the machinery developed previously is applied-to impurities, dis-
ordered systems, the effects of external fields, and transport phenomena
(including superconductivity). The book concludes with an introduction to
many-body theory, including some applications.

The specific selection of topics is obviously a personal one, and some
areas of considerable importance, such as mechanical properties, surfaces,
electron diffraction, and amorphous materials, have not been included.
Experimental results are used occasionally and illustratively. There is no
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x PREFACE

detailed confrontation of specific approximations with experimental data.
MKS, cgs, and atomic units have been used rather interchangeably.
Some problems have been included.

I am indebted to my colleague, Dr. John Kimball, and to several stu-
dents (W. Y. Ching, M. Eswaran, G. S. Grest, W. Y. Hsia, M. Singh, and
C. 8. Wang) for critical readings of portions of the manuscript.



Note to the Reader

In Part B the superscript “plus’” (+) is used to indicate a Hermitian
adjoint instead of the superscript ‘“‘dagger’” (') used in Part A.
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CHAPTER 1

Lattice Dynamics

In this chapter we will present some portions of the theory of the vibra-
tions of crystal lattices. We will also describe some of the geometrical
relations and constructions which are useful in almost all branches of the
theory of solids. Our point of view with respect to the lattice vibrations
will be phenomenological, that is, we will assume that the forces between
atoms are known and can be described by a set of force constants, which
are the second derivatives of the interatomic potentials with respect to
atomic displacements. The displacements themselves are assumed to be
small, so that for the most part, the forces may be regarded as linear
functions of the atomic displacements. This is the harmonic approximation;
the lattice is treated as a collection of coupled simple harmonic oscillators.
It is the task of a more fundamental theory to determine the interatomic
potential and thus the force constants which we have regarded as disposable
parameters, apart from general restrictions imposed by symmetry and
invariance considerations.

1.1 EqQuations oF MoTioN AND THEIR SOLUTION

In this section we will obtain the general equations of motion for a
vibrating lattice and indicate the method of solution with respect to a
simple example. The treatment is largely based on the presentation of
Maradudin et al. (1971).

1.1.1  The Dynamical Matrix

The periodicity of a crystal is described by a set of vectors R; which
locate each unit cell in the crystal. We assume the crystal contains a large
1§



2 1. LATTICE DYNAMICS

or even an infinite number of unit cells and neglect any effects due to
boundary surfaces. Each R; may be expressed in terms of three independent
(noncoplanar) primitive translation vectors (ai, as, az) in the following
way:

Rg = Ny + Npa + Nqiaz (1.1.1)

where the n,; are integers. Each unit cell contains r atoms. The locations of
the r atoms are given by the vectors d. where « indicates the different

atoms in the unit cell, and takes the values 1, 2, . . . , 7. The general position
of the xth atom in the 7th unit cell is then
X« = R; + d.. (1.1.2)

We now suppose that each atom is displaced from its equilibrium position
by an amount wu, (the ath rectangular component of u, is denoted by
Ua,ix). The mass of the «th atom is M,. The atoms are heavy enough so
that their behavior can, in most instances, be described classically.

The total kinetic energy of the lattice is therefore

T=13%3 Ma. (1.1.3)
where the dot indicates derivative with respect to time.

Let the total potential energy of the crystal be denoted by ®. This
quantity will be a function of the atomic positions. When the atoms are
displaced from their equilibrium positions, ® will differ from its equilibrium
value &, This difference may be expressed as a Taylor series in the atomic
displacements

& = B+ 2 Buiaic + 3 2 Bapicilhaitipis + o0 (1.14)
ixa wa, jv8
In this chapter we will make the harmonic approximation, that is, we will
neglect terms in (1.1.4) higher than second order in the atomic displace-
ments. The quantities ®, are derivatives of the potential energy.

B, i = [09/a,ix o Bap.ix,iv = [0°®/0Ua,ix up jn oo  (1.1.5)

The subscript 0 indicates that the derivatives are evaluated in the equilib-
rium configuration of the erystal.

It is apparent that @, . in the negative of the ath component of the net
force on atom 7k in its equilibrium position. However, this notion is con-
tredictory in that if there were a net force on an atom, it would move, and
so the original position would not have been one of equilibrium. Thus we
must have

@a.l’l = 0. (1.1.6)



1.1 Equations of Motion and Their Solution 3

The Hamiltonian of the system is therefore

H=®+3> Malaic+3 X Papicillaictsip  (1.17)
aik, Biv
The equations of motion of the lattice are then easily found to be
Mﬂzn,ix = _aq’/auu.ix = E (paﬁ.i(.jvuﬁ,jv- (1.1.8)
Biv
There are a number of restrictions that may be imposed by general physical
considerations on the coefficients ®.3,:,;. Some of these include:

(1)  ®ap,ic.5» depends on R; and R; only through their vector difference
R; — R;. This follows because we may displace the origin of coordinates
arbitrarily without altering the ®,s.

(2) Suppose the lattice is displaced rigidly (all wus,; are made in-
dependent of j and »). No acceleration can result. Thus

Z Qaﬁ.ix,jv = 0. (1'1'9)
>

Other restrictions are derived by Maradudin et al. (1971).
Let us obtain periodic solutions to (1.1.8). We write

Ua,ix = M uq (k) exp[ —iwt + 7k-R;]. (1.1.10)

Here u,..(k) is assumed to be independent of R;. This is to be substituted
into (1.1.8). We obtain
— M 202 exp[ —twt + k- R; Jua (k)
= — D> M, 2@ ;up,(k) exp[ —iwt + tk-R; + k- (R; — R;)].
Biv
(1.1.11)

Since ® depends only on R; — R, we may replace the sum over R; by one
on R; — R;. Thus we have the set of simultaneous equations

Wi u(k) = z‘;jD.p...(k)up,.(k) (1.1.12)
where
Dapw(k) = (MM,)12 3 @apicio exp[—ik- (Ri — R;)].  (1.1.13)
Ri—Rj

D is frequently referred to as the “dynamical matrix,” and k is the wave
vector of the vibrational wave. The condition for the set of linear homo-
geneous equations to possess a nontrivial solution is

det[w? 648 8es — Dap.ev(k)] = 0. (1.1.14)



4 1. LATTICE DYNAMICS

The matrix D is of dimension 3r X 3r (recall that r is the number of atoms
in the unit cell). Furthermore, it is Hermitian:
D*sa (k) = D ®pa.iv.ic exp[—ik-(R; — Ry)]

Ri—Rj
= Z Do, ix,iv €Xp[ —tk* (R; — Ri)] = Dagu(k). (1.1.15)

We have used the symmetry property of the derivatives of & that
q’ﬂa.iv.jx = (bcﬂ.ix,iv-

Thus we see that there are 3r real eigenvalues to be determined. We
denote these eigenvalues by w?(k) (j = 1,...,7). They are the squares
of the normal mode frequencies for the crystal. The index j designates a
branch; and within a branch »? will be a continuous function of k (out to a
certain limit, as we will find later).

The equation

w = w;(k) (§=1,2,...,3r) (1.1.16)

is known as the dispersion relation for the crystal.
For each of the 3r values of w for given k, there is an eigenvector of D
which we denote by e, or e, ., (k). This satisfies
w2 (K)€ap® (k) = D Dagu(k)es.? (k). (1.1.17)
Bx
These vectors are determined by (1.1.17) only up to a constant factor;
however, they may be normalized conveniently. The e’s are in fact elements
of a unitary matrix which diagonalizes D. As a result, we have both ortho-
normality and completeness relations in the form

orthonormality : Z o P*(K)ea P (k) = 8j, (1.1.18a)

completeness: Z Cax*(k)eg, (k) = 8ap Ox. (1.1.18b)
j

Since the ®,4 are real, it follows from (1.1.13) that
Daﬂ.“(—k) = D*aﬁ,xv(k)- (1.1.19)

Since D is Hermitian, the eigenvalues are always real; it therefore follows
that
wi (k) = w?(—k). (1.1.20)
This relation can also be shown to be a consequence of time reversal
symmetry.
If we now take the complex conjugate of Eq. (1.1.17), we see that the
eigenvectors must be proportional::

Can*(K) ‘= ceur? (—k).
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We require that completeness and orthonormality relations hold for (—k)
as well as for (k) so that ¢ must be a complex number of modulus unity.
We will choose ¢ to be 1, so that

taxP*(k) = €a.?(—k). (T2

1.1.2 Some Properties of the Vibrational Spectrum

Three of the branches of the spectrum are such that w goes to 0 as k goes

to 0. To see this, set k = 0in (1.1.17), which then becomes
w;?(0)ea? (0) = Z [q)aﬁ.il-iv/ (M.M,)""*]eg,(0). (1.1.22)
B

Now we can solve (1.1.22) trivially by supposing that, for each g,
(es,(0)/M,'7) is independent of ». Then the right side of (1.1.22) vanishes
because of (1.1.9) and we have a solution with w = 0.

The modes which have this property are called acoustic modes. The
remaining 3r — 3 modes are called optical modes. The atomic displacements
corresponding to the w = 0 acoustic modes are, from (1.1.10)

u;, = M, 2,(0) = const.

All 7 particles in each unit cell move in parallel with equal amplitudes.
This is characteristic of an elastic wave of infinite wavelength.

Let us now consider the case of r = 2, corresponding to an ionic crystal
with two atoms in each unit cell. We apply Eq. (1.1.18a) and let j refer
to one of the optical branches while ¢ refers to any of the acoustic branches.
Further, we allow « to take the values +, — which may be considered to
refer to the ions of positive and negative charge, respectively. We may
now write Eq. (1.1.18a)

e, (0)-e;(0) + e_?(0):e_?(0) = 0. (1.1.23)
We have already seen that for the acoustic branch

e, V(0)/ M2 = e_D(0)/M_12,
Thus we have

e, (0)+[e4?(0) + (M_/M,)'5e_>(0)] = 0.

Since the three polarization vectors e (¢ = 1, 2, 3) for the acoustic modes
are independent, it follows that

M, 2e D (0) + M_2%e_D(0) =0 (1.1.24)
which implies, through (1.1.10), that
M+u.~+ + M_u;'_. = 0. (1.1-25)
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This result may be interpreted as meaning that the two ions in any unit
cell vibrate 180° out of phase with each other, but in such a way that the
center of mass of the cell remains fixed. Because the two ions have opposite
charges, there will be a net oscillating dipole moment in the crystal. Recall
that from (1.1.10), since we are concerned with £ = 0, each cell will vibrate
in phase with every other cell. Such a dipole moment can interact with an
external electric field, and this gives the modes their name. In the case of
more than two atoms per unit cell, the interpretation will not be so simple.

We continue with the case r = 2, and now consider a cubic erystal. We
will determine the frequency of the vibrations at &k = 0. We multiply
(1.1.17) by en@*(k) and sum over av. With the use of (1.1.18a) we have

wi(k) = 2 €as?*(k)Dagc(k)es (k). (1.1.26)

av, Bx
This is very much like a quantum mechanical expectation value, and is
valid for any k. Now we substitute for D, using (1.1.12), and put k = 0

explicitly:
O’j2(0) = z: (MIMV)_‘/zec.-(j)*(O)q)aﬂ,iv,heﬂ,z(j)(o). (1.1.27)
av,Bx, Ri—R}

We now manipulate this expression. Write out the sum over » and « ex-

plicitly in terms of + and —:

0(0) = 2 {ear@*(0)[(My) ™' ®ap.iv 1408+ (0)

af, Ri—R}
+ (M M_)7 .5 iy 159 (0)]
+ €aP*(0) (M M_) " 2P0 i 1165: (0)

+ (M_)7'®ap,i—1-€5-"(0) ]}.
Then we use (1.1.24) and (1.1.9) to obtain

w?(0) = 25 {[eay*(0)es.(0) + eaP*e5 2(0)]

af;Ri—R}
X [(®ap.is. 14/ M) + (Pap.i-a-/M_)]}. (1.1.28)

We now assume the erystal is cubie. In this case, if we sum over all lattice
sites, terms with o # 8 must disappear, since transformations such as
x — r, y — —Y, 2 — 2z change the sign of the second derivatives but cannot
change the potential energy of the system. Similarly, the application of
transformations such as ¢ —y, y — 2z, z— 2z shows that all diagonal
(a = B) terms are equal. Thus

E q)aﬁ.ii.li = aaﬂ E ‘taa.i;{;.li, (1129)

Ri—Ry Ri—Ry
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and the right side is independent of a. We can use this result in combination
with (1.1.18a) to obtain

w2(0) = 2. [(Baaits/ML) + (Pawica/M)]. - (1.1.30)
Ri—R:
The right side of (1.1.30) is independent of 7, and we may therefore conclude
that the frequencies of all three optical modes at £ = 0 in a cubic crystal
are equal.

We now want to consider the small k& behavior of the acoustic branches
in more detail. In this case, w becomes linearly proportional to k, the
proportionality constant being the appropriate velocity of sound. As the
algebra can, in the general case, become quite messy we consider here only
a monatomic lattice (one atom per unit cell). In this case, we may drop the
indices « and », and consider Eq. (1.1.11) in the form

@ (k) ua(k) = D Das(k)ug(k). (1.1.31)
B8

We expand the dynamical matrix in powers of k, since k is considered to be
small. Thus

Dosg(k) = Dog(0) + D Capirky + D2 Capyikiyks + <o+ (1.1.32)
kd 7%

where
D.s(0) = (1/M) Y ®.4(R:— R)) = (1/M) Zm(n.), (1.1.33)
Ri—R;
also
Capy = (1/M) D ®og(R))z, D, (1.1.34)
Cagps = (—1/2M) 3 ®ag(R,) 2,025, (1.1.35)

We have defined z,” = (R,),. It is possible, however, to show that c.s,
vanishes. This may be seen if we realize that the second derivatives of the
potential energy must be even functions of R; — R;. This follows since the
atomic interactions must be assumed to be unchanged by an inversion,
that is, if R: - —R; and R; — —R;. Then, there will be compensatory con-
tributions from R; and —R.. Also, we have from (1.1.9) that D,3(0) =
[This leads to w?(0) = 0 in this case.] Hence our small k£ formula is

W (k) e (k) = 3 [Caprskiks Jus (k). (1.1.36)
v88

The frequency w can be expanded as a power series in the components of k.
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Since w;(0) = 0, the leading term in this is of order k, and, therefore, the
leading dependence of «? on the magnitude of k is of second order. This
being so, we may neglect the dependence of u, on | k |. It will, however,
continue to depend on direction so we will denote it by u. (k). Thus we have

wua (k) = 2 caprikiksug(k). (1.1.37)
»38

This equation has the same form as the equation determining the vibration
frequencies for an elastic continuum. We must consider (1.1.37) as an
eigenvalue equation. This equation determines the proportionality constant
between w and | k | for the three possible acoustic waves. This propor-
tionality constant is the relevant sound velocity. The direction cosines of
the polarization vectors are also determined.

1.1.3 Example: A Simple Cubic Lattice

Let us illustrate these considerations by discussing a relatively simple
case: a monatomic, simple cubic lattice of lattice constant a in which forces
are assumed to act between one atom and its first and second nearest
neighbors. The forces are assumed to be central, that is, the potential
energy is a function of the distance between atomic pairs only (and not
angle). Only those displacements which change the distance between atoms
(in first order) will contribute to ®. Such displacements must be along the
vector connecting the atoms in equilibrium. Let u; be the displacement
vector for atom 7. We have the potential function

® =&+ (a/2a?) X [(Ri— R))-(u;— u;)

ij,nn

+ (v/2a%) 2 [(Ri— R))-(w;i — u) (1.1.38)
ij,8n
where nn indicates nearest neighbors, sn second neighbors, and the con-
stants « and v are second derivatives of the potential energy. Let a be the
lattice constant, and z; be the x component of u; with respect to the crystal
axes, etc. Then

— (0*®/9z; 9z;) for |R; — R;| =a, (1.1.39)
— (8*®/dz; oz;) for |R; — R,| = 22, (1.1.40)

a

i 4

The sum in (1.1.38) includes different nearest neighbor pairs. In order to
make the notation more transparent in the following, we replace the single



