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Black Radiation and Light Quanta®

BY

LOUIS DE BROGLIE
(Le Journal de Physique et le Radium, Vol. 3 (1922), p. 422)

The object of this paper is to establish a number of known
results of the theory of radiation by reasoning dependent on thermo-
dynamics, the kinetic theory, and the theory of quanta alone, without
the intervention of electromagnetism.

The hypothesis we adopt is that of light quanta. Black radiation
in equilibrium at temperature 7" is considered as a gas formed of
atoms of light of energy W= hv. In this essay we shall neglect
molecules of light with 2, 3, . . ., atoms Av; that is to say, we ought
to arrive at Wien’s law of radiation, for, from the point of view of
light quanta, Wien’s formula is obtained from Planck’s general
equation by neglecting associations of the atoms.

In accordance with the formule of relativity mechanics, the

mass of the atoms of light is taken as equal to C—:, the quotient of the

energy by the square of the velocity of light. Their momentum is
v _W1
€ r.

* This paper was written at the beginning of 1922, two years before the well-
known one of S. N. Bose on the light-quanta statistics [Zeitsch. fiir Physik, Vol.
27 (1924), p. 384]; it was the origin of the ideas of the author on wave mechanics.

+ [O. W. Richardson, Electron Theory of Matier, p. 243; J. H. Jeans, Report on
Radiation and the Quantum Theory, and Dynamical Theory of Gases.]

1
1 Relativity dynamics gives W = mc* <—\/l:‘_2 — 1) for the kinetic energy of
a body of proper mass m, moving with velocity v = 8¢, and G =7;’n°v B for its

momentum. If the ratio B is small, we get back to the results of ordinary

2
mechanics, W = 7n-“";—: G =mgp = 2—:11 For the atom of light, however, m, must
become infinitely small and Binfinitely close to unity in such a way that \71@—0:,8'2
has a definite value m. We then have W = mc? and G = mc = I/E: these are the
relationships used in the text. ¢
1



2 WAVE MECHANICS

Let n be the number of atoms of light contained in the unit of
volume. On unit surface of the boundary, {nc atoms of light impinge

per second, each of which has momentum equal to i The force on

unit surface, or the pressure, is therefore 2-%nc--;: nW: it is

equal to one-third of the energy contained in unit volume. This
result also follows from the electromagnetic theory and has been
verified by experiment. .

The number of atoms of light of energy W (i.e. of energy between
W and W -+ dW) which are situated in the element of volume
dxdydz, and the components of whose momentum lie between
pandp +dp, ¢ and g + dg, r and » -+ dr, is given by the following
formula of statistical mechanics, which still applies,*

dn,, = Ce *"dxdydzdp dqdr,

where C'is a constant.

To obtain the total number of atoms of energy W we have to
integrate throughout the volume, replace dpdgdr by 4= G2dG,
where G is the length of the vector of momentum, and substitute

for G its value %/ !

This number of atoms of energy W per unit volume can then
be expressed by

w
dn,=C'e " W2dW,

where €’ is another constant.

Integration for all values of W from zero to infinity should give
the number 7 of atoms of light per unit volume This fixes the value
of the constant, and we obtain

e “TW2dW.

n
i = spars
The total energy du of these atoms of energy W is therefore
7 =
du”' = WE e &4 W3 dI/V
per unit volume.

Let us now attempt to determine n. Let us assume that this
number is a function of the temperature only: then this function

*In relativity dynamics the equations of motion are always canonical and
Liouville’s Theorem is always valid.



BLACK RADIATION 3

can be determined thermodynamically. In fact, the total energy per
unit volume is

‘ f:odu,,,, or 3nkT,
for [T W aw = T4 [* e+ 53 dx — 6heTs,

This result suggests a remark. Each atom of light possesses, on
the average, energy 37 and not £%7 as in the case of the molecules
of an ordinary gas, whose velocities are as a rule small compared
with the velocity of light. Thus we come back to a fact which the
electromagnetic theory explains by the equality of the electric and
magnetic energies of a wave of light. This parallelism is reached by
using relativity formule, which alone allow the exact value of the
pressure of radiation, calculated above, to be obtained from the
quantum theory of light, whereas the old corpuscular theory of
light leads to a value twice the correct one.

The total energy of the gas is therefore U = 3nkTV and the
differential of its entropy is

S — ;,(dU+p av)

L —;,<3nkaT 1 SukTdV - 3kVT;‘iZ;’}dT+ ndeV),

since the pressure is one-third of the energy per unit volume. Hence

3nklV dn
s = (‘»T- +3kV o7

In order to make dS an exact differential, we must have

3nk dn dn dn 3
T T3kgr="14kgp or =1

the solution of which I write in the form n — AT 3, A being a
constant unknown for the present. This constant js related to
Stefan’s constant o, for the energy per unit volume is

3nkT = 3ARTY,

) dT + dnk dV.

whence, by comparison, o = 34k%,
Substituting the value of 7 in the expression for dS, it becomes

dS =12 ART2 V dT + 4AKT3 dv,
whence S = 44TV

without another constant, since for 7"— 0, =0, the gas no longer
exists.



4 WAVE MECHANICS

Since 4 = %1, we obtain the classical expression S = §aT3V.

The free energy FF'= U — TS can at once be found: it is equal to
SnVRT — T-4nkV = —nVkT = — AVET!

or to —NET, where N is the total number of atoms in the volumeV’.
There is no constant to be added, since the proper mass of the atoms
is nil.*
The quantity of energy which atoms of energy W possess per
unit volume is
A -
du,,,: “2' e A% W3 dW,

. Aht _ v
and since W = hv, duy =——¢€ Ty dv.

Thus we obtain the form of Wien’s law. Can we calculate the
value of the numerical coefficient in this law (without using the
experimental value of o, of course)?

We can attempt to do so by the method which has enabled
Planck, Sackur, Tetrode, and others to calculate the  chemical
constant ”.+ We shall follow the argument recently developed by
Planck.] If a gas consists of N atoms at temperature 7', the law of
canonical distribution which was proposed by Gibbs and which
M. Léon Brillouin has put on a solid basis by utilizing the idea of

a thermostat, leads to the formula
€

F= —FkT logZe kT

for the free energy, the sum being taken for all possible states of the
gas. 'This sum can be expressed as an integral taken over the whol¢
phase extension of 6N dimensions, an integral which is itself equiva-
lent to the product of N sextuple integrals taken over the phase ex-
tension of each molecule, if care be taken, as Planck explains in the
article mentioned, to divide the result by N!. The theory of quanta
introduces the hypothesis of an elementary domain of phase exten-
sion of size g; g has the dimensions of the cube of an action, and the
calculation of the chemical constant leads us to set g = A® (h is
Planck’s constant).
The expression for F can then be written

w
7 N
Fe kT g (LI ey dedpdgary” L)
F; N1
* The thermodynamic potential U — T'S + pV is identically zero.
+ [H. S. Taylor, Treatise on Physical Chemistry, p. 1137.]
T Annalen dev Physik, Vol. 66 (1921), p. 365.




BLACK RADIATION 5
A i r _kﬂ; 2 :,
= kNTlog[Ng/n ¢ Tin GG

8mwel/ k3T
= — ENTlog [7]@_ % 73-].
We found that F = — NET, no constant being added, since the
proper mass of atoms of light is negligible. In order to make the

8mel k3T3:, .

two expressions identical we must have log[

e

whence, since N = AR3T3Y, Ng ¢

L

4 c3g R
Consequently du, becomes

hv
| du, =278 =57 3 4,
c

The expression differs from Wien’s law by a factor 2. This
difference is not due to a mistake in the calculation, but, as M.
Léon Brillouin has pointed out to us, it is probably due to the
fact that the idea of the polarization of light was not taken account
of in the preceding theory. A more complete theory of light quanta
should introduce it in some such form as this: with each atom of
light there would be associated an internal state of right-handed or
left-handed circular polarization, represented by an axial vector in
the direction of the velocity of propagation. Two atoms having the
same position and the same velocity, if they were to be regarded as
identical in the calculation of F, would further require to be polarized
in the same sense (right-handedly or left-handedly); this would
introduce a factor 2" under the logarithm sign in  the expression
for F, thus restoring the exact value of the numerical coefficient of
Wien’s law.

By considering a mixture of monatomic, diatomic, triatomic, . . .

““ gases of light ”, we should also be able to obtain Planck’s law in
the form
2hv 3

hy hv
du, = %ﬁﬁ [e AT+ e #T o 4T 4, J.

This would require some rather arbitrary hypotheses, and we shall
not proceed further in this direction.

We can also arrive at the conception of a gas of atoms of light
in the following way.

Consider a gas formed of N atoms of proper mass >’ m, in
equilibrium at temperature 7. Suppose that relativity dynamics
applies to these atoms and neglect all interaction between the atoms:



6 WAVE MECHANICS

thus our gas is a perfect gas. The energy and momentum are
given by the equations:

1 7, v

W = myc? <ﬁfl); G:\_/T:sz; B:E

Statistical mechanics gives the number dN of atoms whose energy
lies between W and W - dWW (see above),

dN,. = CNe **G2dG
w
= CNe “"mgc~/ a(a+ 2) (a + 1) dW,
putting ;1—222: a for short. If the mass m, is sufficiently large to make

the quotient 7{[—2—2 very small for practically all the atoms (and this is
0

what happens in the case of material gases at ordinary temper-
atures), we revert to Maxwell’s ordinary formula. Suppose, on the
contrary, that the mass m, is very small; then practically all the
atoms will have velocities very close to ¢: it may indeed happen, if
my be small enough, that the number of molecules whose velocity
differs from ¢ by more than one-millionth is negligible. In that
case a will be much greater than unity, and we can write:

5
dN,, = C' Ne “"W2dW,

a formula from which, as we have seen, the Planck-Wien law is
deduced.

The hypothesis of the quantum theory of light should therefore,
with the adoption of relativity dynamics, lead us to regard the atoms
of light (supposed of the same very small mass) as moving with
velocities which vary according to their energy (frequency), but
which are all very close to ¢. We should thus explain why light
appears to be propagated (within the limits of experimental pre-
cision) with exactly the velocity which in Einstein’s formulse plays
the part of infinite velocity.*

Summing up, the essential conclusions of the present paper are
as follows:

L. By means of the quantum theory of light, coupled with the
rules of statistical mechanics and of thermodynamics, we can re-
obtain all the results of the thermodynamics of radiation and even

* The ““radiation” of frequency v would be carried by atoms of mass
5. 2 5. 2
displaced with velocity ¢ — 52}:?\; the quantity ;}%’tgz escaping experimental detec-
tion on account of the smallness of nz,.
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the Planck-Wien law of distribution.* These results, however,
expressly assume that the formule of relativity dynamics are used
for atoms of light.

2. There is no doubt that there is a close connexion between
the chemical constant of gases and Stefan’s constant for black radia-
tion. This connexion has been set forth already by M. Lindemann
in a recent paper on the vapour pressure of solids.t He reveals to

us a new aspect of the constant interaction between matter and
radiation.

* On the question of light quanta, see Emden, Phys. Zeitschy., 22 (1921), 509;
L. de Broglie, Comptes Rendus, 175 (1922), 811.

+ Phil. Mag., 39, pp. 21-5.
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On the Parallelism between the
Dynamics of a Material Particle and
Geometrical Optics

BY

LOUIS DE BROGLIE
(Le Journal de Physique et le Radium, Vol. 7 (1926), p. 1)

Summary.—By associating the propagation of a wave with the motion of
a material particle, the energy and momentum of the particle can be related to
the frequency and phase velocity of the wave in such a way that the usual equations
of dynamics are derived from a dispersion formula.

The corpuscular theory of light comes up against difficulties when propagation
in refracting media is studied; one of these difficulties, which is of great historical
importance, relates to a supposed contradiction between the principle of least
action and Fermat’s law. By deducing the dynamics from the theory of waves,
we can consider the question from a new point of view and remove certain objec-
tions.

1. Classical Ideas.—The object of this exposition is to show
how the ideas about quanta which I have recently developed permit
a precise statement to be made as to the parallelism, the existence of
which has been indicated for so long, between the dynamics of a
particle and geometrical optics.

Let us commence by recalling some outstanding laws of the
theory of waves, without confining ourselves specially to light waves.

To begin with, I shall give the following general definition: A
physical phenomenon is said to be propagated in simple sinusoidal
waves, if its mathematical definition involves a sinusoidal function
of the co-ordinates of space and time, which is called the phase,
and which possesses the two following properties: 1. At a point in

space it has period 7" and frequency v = 2. The different values

T
of the phase are displaced in space along certain lines called the
““ rays of the wave ", with a velocity V, which is in general a function
of the co-ordinates of space and time as well as of the frequency:
this velocity I may also depend on the direction of the ray as looked
at from a given point.

(D 810) 9 2

L\



10 WAVE MECHANICS

In all that follows, I shall for simplicity suppose that the medium
is isotropic and in a permanent state. In this case the rays of the
wave will have an invariable form and the phase velocity ¥ will be
a function of the space co-ordinates and of the frequency alone.
We shall express this relationship by the equation

n:fyqu(xrya 2, v),

where c is the classical constant of Maxwell’s equations. This equa-
tion defines #, the index of refraction.

Besides the velocity 77 we shall introduce a quantity called
“ group velocity ”.* This is defined by supposing that we have not
to deal with a simple sinusoidal wave, but with a group of simple
sinusoidal waves of nearly equal frequencies comprised within a
small interval v — 8v, v+ 8v. On account of the variation of the
refractive index with the frequency, the points where the different
simple waves are in the same phase move with a velocity U generally
different from V, and a familiar piece of reasoning gives:

_av_c ov
v o)
oy

The study of electromagnetic waves in accordance with classical
ideas shows that the energy carried by one of these waves in general
moves with the group velocity, which is always less than, or at most
equal to, the constant c.

To calculate the movements of the wave it is sufficient to know
the frequency and the function which determines the values of the
refractive index. A principle which, in optics, bears the name of
Fermat, the great French physicist and mathematician, tells us, in
fact, that if a ray passes through two given points A and B, the
time taken for the phase to go from A to B is a minimum, or in
other words: if the phase followed a path differing slightly from the
actual ray, it would take longer to go from A to B. Thus we must
write:

s_ﬁsz %S/An dl=0,

and, since 7 is known as a function of «, y, 2, the path followed by the
ray is determined in this way.

Before we come to my own ideas, let us examine two problems
of wave propagation which play a great part in geometrical optics.

* [T. H. Havelock, Propagation of Disturbances in Dispersive Media (Cam-
bridge Mathematical Tract).]



DYNAMICS AND GEOMETRICAL OPTICS I

(@) The passage of a wave from a medium of uniform refractive index
ny to a medium of uniform refractive index n,.

The solution is well known. The ray which goes from the point
A of the first medium to the point
B of the second is composed of two S (i)
straight lines which meet at a point Y
M of the surface of separation such
that Descartes’ law holds:

7y Sina, = 71, Sin a,.

X

(b) The forin of the rays in a @ %
refracting sphere, the refractive index (n,) e
of which is a function of the distance
from the centre and the frequency alone.

In optics, this problem is called the “ problem of astronomical
refraction . The form of the rays is given by an equation,* due to
Bouguer, which is deduced from the principle of minimum time.
If M is any point on the ray to be found, and if MT is the tangent
to the ray at that point, the pro-
duct of the refractive index at the
point M and the distance from the
centre of the sphere to the tangent M)

M'T has a value which is constant
all along the ray:

np=C.

e

<

2. New Hypotheses.—Up to
this point I have confined myself
to observations of a classical nature
on waves and their rays. I am now
going to introduce a hypothesis
which is characteristic of my interpretation of quanta. I shall sup-
pose that there is reason to admit the existence, in a wave, of points
where energy is concentrated, of very small corpuscles whose motion
is 80 intimately connected with the displacement of the wave that a
knowledge of the laws regulating one of these motions is equivalent
to a knowledge of the laws regulating the other.

Conversely, I shall suppose that there is reason to associate wave
propagation with the motion of all the kinds of corpuscles whose
existence has been revealed to us by experiment.

In other respects, I shall in this paper adopt a point of
view slightly different from those which I have developed up
to now, for I shall take the laws of wave propagation as funda-
mental, and seek to deduce from them, as consequences which are

* [S. Parkinson, Treatise on Optics, § 121.]

a




12 WAVE MECHANICS

valid in certain cases only, the laws of the dynamics of a particle.

I therefore take for granted the principle of minimum time,
which follows immediately from undulatory conceptions, and I sup-
pose that the relation which gives the value of the refractive index ,
at any point and for any frequency, is known. The motion of the
wave being thus determined, it is sufficient, in order to deduce from
it the motion of an associated corpuscle, to know the expressions
which give the energy W and momentum g of the wave at any point,
as functions of 7 and v. For reasons explained in my thesis, one
hypothesis is absolutely necessary, namely, to set

W=hyv, g= %1,} == él(nv),

the vector g being tangential to the ray along which the phase at

the point considered is propagated. Under these conditions, the

corpuscle will follow the ray determined by the principle of minimum

time 8/ ndl =0, and its trajectory will, in fact, be that found dyna-
mically by applying Maupertuis’ principle j gdl=0.

We shall suppose that the velocity of the moving particle is equal

to the group velocity of the waves along the ray, and we shall write

ov oW

9 —tBe=—il= 6'87(11719) — E‘,;

Thus our results are still in agreement with mechanics, for, according
to Hamilton’s equations,* the velocity is the partial differential co-
efficient of the energy with respect to the momentum. The preceding
hypotheses involve the usual form of the fundamental equation of
dynamics, for we have:

2(nv)

do _ (0) ., R v ol v oW g

m*(ﬁ),/’—c TR T e e T
ov

3. Dynamics of a Particle.—We have thus established a
close connexion between the propagation of the wave and the dyna-
mics of the associated corpuscle. Let us now see if we can deduce
from it the particular relations which dynamics postulates between
velocity and mass on the one hand, and between energy and mo-
mentum on the other hand.

In order to do this we must in each case specify the form taken
by the equation of dispersion n = ¢(x, y, 2, v). Let us first study the

* [E. T. Whittaker, Analytical Dynamics, § 109; M. Born, Mechanics of the
Atom, p. 20; G. Birtwistle, Quantum Theory of the Atom, p. 54.]
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propagation of a given type of waves in free space at-a great distance
from any other matter. 'The following form of the function ¢ is
imposed by the principle of relativity:

where v, is an invariant having the same value for all Galilean systems
and characteristic of the intrinsic nature of the wave. A corpuscle
associated with the wave in the way just specified will have a velocity

Lo c_ ¢ :
Thus, in this case,n = B, and consequently V' = = result which
I have proved in many other ways: the energy and the momentum
are given by

]ZV hl/
W: h - ,,,0,, — & 07_ .
T l—m J1— B2
These forms can be identified with those of Einstein’s dynamics by
putting

h w
g:;(nv)zﬁv.

n AT
hvg=—"1,02,

a relation which defines m,, the proper mass of the corpuscle, as a
function of the invariant v,. If the wave considered is a light wave,
the invariant v, and consequently the proper mass , must be taken
as extraordinarily small: perhaps, to avoid an objection which
M. Langevin has kindly pointed out to me, it would even be
better boldly to put v,=m,= 0. In any case, the velocity of the
corpuscle must be extraordinarily close to the constant ¢, if not
equal to it, and the dynamics of the atom of light appears as a limiting
case of the dynamics of a material particle. In particular, it is easy
to show that this point of view permits of a complete explanation of
the various Doppler effects.

Let us now leave the case of free space and consider a medium
with spherical symmetry in which the refractive index varies with the
distance 7 from the centre according to the law

i (1 - Lﬁ’))z L

V2
The velocity of an associated corpuscle is here found to be given
L ne
o

14



