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Preface

Perhaps the best way for students of experimental physics to meet quan-
tum theory for the first time is through a course in quantum physics, in
which the emphasis is on a description of quantum phenomena and the
general ideas (such as the uncertainty principle) that are essential for
explaining them. The aim of such a course would be to give the students
some feeling for the experimental phenomena described by quantum
theory, and an understanding of how classical mechanics fails to explain
them. They are then ready for a more mathematical presentation of
quantum mechanics in the final two years of their undergraduate course.
This text is intended to cover a course of the latter type, and the first
chapter is a rapid overview of the important ideas that I assume students
will have already met in an introductory course.

Maths and quantum physics

A course in quantum mechanics inevitably introduces some mathematics
that is unfamiliar to most students. The reader of this text is expected to
have a good knowledge of elementary calculus (including integration by
parts), vectors and the solution of simple differential equations - that is,
those of first order, and of second order with constant coefficients.
Chapter 9 uses the expansion of a function in a Fourier series to introduce
the superposition principle, and in Chapter 10 some elementary know-
ledge of matrix algebra is assumed. Appropriate references are provided
for those not familiar with these last two topics. Concepts associated with
the use of linear operators, their commutation relations and eigenvalue
equations are introduced in the text, assuming no prior knowledge on the
part of the reader.

It is important that students should try to come to grips with the basic
mathematical ideas that are necessary for a proper understanding of
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quantum theory. However, this does not mean that they need to become
experts at actually performing complex mathematical operations. In prac-
tice almost all quantum calculations on real systems can only be per-
formed numerically, using a computer. What is necessary, therefore, is
that the student should acquire an understanding of the overall strategy of
solving the mathematical problems that arise in quantum mechanics — he
or she should understand the nature of the predictions that it is possible
to make about a given physical system, the type of mathematical calcula-
tion that is entailed, the way physical restrictions on the system are
translated into mathematics, and what sort of results to expect.

Content and organization

It is traditional in textbooks on quantum mechanics to collect the basic
mathematical ideas together in one chapter, with a title that is some
variation of ‘Mathematical foundations of quantum mechanics’. Although
this is logical and concise, I feel that it is not the best approach for the
student meeting the formal theory for the first time. In contrast I have
spread the mathematical ideas throughout the text, using and expanding
on one concept before introducing the next.

The fundamental assumptions on which quantum mechanics is based
are encapsulated in four postulates, to be found in Chapters 2, 3, 9 and
12. Chapter 2 concerns the wave function and its probability interpreta-
tion, and Chapter 3 introduces the operator representation of dynamical
variables, and the idea of an eigenvalue equation, in particular the time-
independent Schrédinger equation. Chapters 4-8 continue the discussion
of solutions of eigenvalue equations, in particular those for energy (the
time-independent Schrédinger equation) and angular momentum. Com-
mutators are introduced in Chapter 4, and are used throughout the book
as an important tool, not only mathematically (as in Chapters 5 and 6,
where they are applied in the solution of eigenvalue problems by alge-
braic methods) but also as an indication of the physical characteristics of a
system (as in Chapter 7, where they are used to investigate the state of a
particle in a central potential).

The description of an arbitrary state of a particle through the superposi-
tion principle is introduced in Chapter 9, and this mathematical formalism
is necessary, to a greater or lesser extent, for developments in the last five
chapters. It is impossible to cover all aspects of non-relativistic quantum
mechanics in a single book. Important topics that are discussed briefly
include the matrix formulation of the theory (Chapter 10), approximate
methods for solving the Schrodinger equation (Chapter 11), time-depend-
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ent problems (Chapter 12), and the idea of a joint probability distribution
for a system of many non-interacting particles (Chapter 13). Quantum
scattering theory is omitted, but it would be artificial to avoid all mention
of scattering experiments, since they provide such an important means of
investigating quantum systems. Consequently scattering from a potential
step and from a square well is discussed in Chapter 3, and the Born
approximation is derived as an example of the application of time-
dependent perturbation theory in Chapter 12. The final chapter is not
intended to be part of an examined course, but aims to clarify the
concepts of indeterminacy and non-locality that underlie quantum mech-
anics.

Examples

The physical examples used in the text have been chosen to reflect the
enormously wide range of phenomena explained by quantum mechanics,
and include some (in particular the scanning tunnelling microscope and
quantum well structures) that are of importance in modern technology.
Restrictions in the time allotted to a lecture course would usually make it
impossible to cover all the examples mentioned, but many would be
encountered in parallel physics courses — on spectroscopy or condensed
matter physics, for example.

Problems

Problems are provided at the end of each chapter, some of which are
fairly simple elaborations on the text, while others extend the theory that
has been presented to different systems. Some problems (indicated by an
asterisk) refer to programs on the accompanying computer disk, and
provide detailed suggestions for using them. Briefly, the interactive pro-
grams allow students to solve energy eigenvalue equations for a range of
systems and plot the associated wave functions and probability distribu-
tions, to examine the transmission of a plane wave through a one-dimen-
sional square well or barrier, to watch the scattering of a Gaussian wave
packet by a square barrier, and to construct wave packets
for a particle in an infinitely deep one-dimensional square well or a one-
dimensional simple harmonic oscillator and observe how they evolve with
time.

The programs on the disk are described in detail in Appendix C. The
full menu is as follows:
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(1) The one-dimensional Schrédinger equation
(a) Infinite square well
(b) Finite square well
(c) Harmonic oscillator
(d) Anharmonic oscillator
(e) Triangular well

(2) The Kronig—Penney model

(3) The Schrodinger equation: central potentials
(a) Coulomb potential
(b) Harmonic oscillator (three-dimensional)

(4) Orbital angular momentum

(5) Transmission
(a) Plane wave, one-dimensional square well
(b) Plane wave, one-dimensional square barrier
(c) Gaussian wave packet, one-dimensional square barrier

(6) Wave packets (one-dimensional)
(a) Infinite square well
(b) Harmonic oscillator

The disk will run on any IBM-compatible pc, with at least a VGA
monitor, though some of the programs will be rather slow on machines
without a maths co-processor.

It should be noted that the software on the disk is free to qualified
adopters only.
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