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Preface

Machine learning is a fascinating area to work in: from detecting anomalous events
in live streams of sensor data to identifying emergent topics involving text collection,
exciting problems are never too far away.

Quantum information theory also teems with excitement. By manipulating particles
at a subatomic level, we are able to perform Fourier transformation exponentially
faster, or search in a database quadratically faster than the classical limit. Superdense
coding transmits two classical bits using just one qubit. Quantum encryption is
unbreakable—at least in theory.

The fundamental question of this monograph is simple: What can quantum
computing contribute to machine learning? We naturally expect a speedup from
quantum methods, but what kind of speedup? Quadratic? Or is exponential speedup
possible? It is natural to treat any form of reduced computational complexity with
suspicion. Are there tradeoffs in reducing the complexity?

Execution time is just one concern of learning algorithms. Can we achieve higher
generalization performance by turning to quantum computing? After all, training
error is not that difficult to keep in check with classical algorithms either: the
real problem is finding algorithms that also perform well on previously unseen
instances. Adiabatic quantum optimization is capable of finding the global optimum
of nonconvex objective functions. Grover’s algorithm finds the global minimum in a
discrete search space. Quantum process tomography relies on a double optimization
process that resembles active learning and transduction. How do we rephrase learning
problems to fit these paradigms?

Storage capacity is also of interest. Quantum associative memories, the quantum
variants of Hopfield networks, store exponentially more patterns than their classical
counterparts. How do we exploit such capacity efficiently?

These and similar questions motivated the writing of this book. The literature on the
subject is expanding, but the target audience of the articles is seldom the academics
working on machine learning, not to mention practitioners. Coming from the other
direction, quantum information scientists who work in this area do not necessarily
aim at a deep understanding of learning theory when devising new algorithms.

This book addresses both of these communities: theorists of quantum computing
and quantum information processing who wish to keep up to date with the wider
context of their work, and researchers in machine learning who wish to benefit from
cutting-edge insights into quantum computing.
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indicator function

set of complex numbers

number of dimensions in the feature space
error

expectation value

group

Hamiltonian

Hilbert space

identity matrix or identity operator
number of weak classifiers or clusters, nodes in a neural net
number of training instances
measurement: projective or POVM
probability measure

set of real numbers

density matrix

Pauli matrices

trace of a matrix

unitary time evolution operator

weight vector

data instance

matrix of data instances

label

transpose

Hermitian conjugate

norm of a vector

commutator of two operators

tensor product

XOR operation or direct sum of subspaces
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Introduction

The quest of machine learning is ambitious: the discipline seeks to understand
what learning is, and studies how algorithms approximate learning. Quantum machine
learning takes these ambitions a step further: quantum computing enrolls the help of
nature at a subatomic level to aid the learning process.

Machine learning is based on minimizing a constrained multivariate function, and
these algorithms are at the core of data mining and data visualization techniques. The
result of the optimization is a decision function that maps input points to output points.
While this view on machine learning is simplistic, and exceptions are countless, some
form of optimization is always central to learning theory.

The idea of using quantum mechanics for computations stems from simulating
such systems. Feynman (1982) noted that simulating quantum systems on classical
computers becomes unfeasible as soon as the system size increases, whereas quantum
particles would not suffer from similar constraints. Deutsch (1985) generalized the
idea. He noted that quantum computers are universal Turing machines, and that
quantum parallelism implies that certain probabilistic tasks can be performed faster
than by any classical means.

Today, quantum information has three main specializations: quantum computing,
quantum information theory, and quantum cryptography (Fuchs, 2002, p. 49). We
are not concerned with quantum cryptography, which primarily deals with secure
exchange of information. Quantum information theory studies the storage and
transmission of information encoded in quantum states; we rely on some concepts
such as quantum channels and quantum process tomography. Our primary focus,
however, is quantum computing, the field of inquiry that uses quantum phenomena
such as superposition, entanglement, and interference to operate on data represented
by quantum states.

Algorithms of importance emerged a decade after the first proposals of quantum
computing appeared. Shor (1997) introduced a method to factorize integers expo-
nentially faster, and Grover (1996) presented an algorithm to find an element in
an unordered data set quadratically faster than the classical limit. One would have
expected a slew of new quantum algorithms after these pioneering articles, but the
task proved hard (Bacon and van Dam, 2010). Part of the reason is that now we expect
that a quantum algorithm should be faster—we see no value in a quantum algorithm
with the same computational complexity as a known classical one. Furthermore, even

Quantum Machine Learning. http:/dx.doi.org/10.1016/B978-0-12-8(00953-6.0{6M) 1-3
© 2014 Elsevier Inc. All rights reserved.



4 Quantum Machine Learning

with the spectacular speedups, the class NP cannot be solved on a quantum computer
in subexponential time (Bennett et al., 1997).

While universal quantum computers remain out of reach, small-scale experiments
implementing a few qubits are operational. In addition, quantum computers restricted
to domain problems are becoming feasible. For instance, experimental validation of
combinatorial optimization on over 500 binary variables on an adiabatic quantum
computer showed considerable speedup over optimized classical implementa-
tions (McGeoch and Wang, 2013). The result is controversial, however (Rgnnow
et al., 2014).

Recent advances in quantum information theory indicate that machine learning
may benefit from various paradigms of the field. For instance, adiabatic quantum
computing finds the minimum of a multivariate function by a controlled physical
process using the adiabatic theorem (Farhi et al., 2000). The function is translated to
a physical description, the Hamiltonian operator of a quantum system. Then, a system
with a simple Hamiltonian is prepared and initialized to the ground state, the lowest
energy state a quantum system can occupy. Finally, the simple Hamiltonian is evolved
to the target Hamiltonian, and, by the adiabatic theorem, the system remains in the
ground state. At the end of the process, the solution is read out from the system, and
we obtain the global optimum for the function in question.

While more and more articles that explore the intersection of quantum computing
and machine learning are being published, the field is fragmented, as was already
noted over a decade ago (Bonner and Freivalds, 2002). This should not come as a
surprise: machine learning itself is a diverse and fragmented field of inquiry. We
attempt to identify common algorithms and trends, and observe the subtle interplay
between faster execution and improved performance in machine learning by quantum
computing.

As an example of this interplay, consider convexity: it is often considered a
virtue in machine learning. Convex optimization problems do not get stuck in local
extrema, they reach a global optimum, and they are not sensitive to initial conditions.
Furthermore, convex methods have easy-to-understand analytical characteristics, and
theoretical bounds on convergence and other properties are easier to derive. Non-
convex optimization, on the other hand, is a forte of quantum methods. Algorithms
on classical hardware use gradient descent or similar iterative methods to arrive at
the global optimum. Quantum algorithms approach the optimum through an entirely
different, more physical process, and they are not bound by convexity restrictions.
Nonconvexity, in turn, has great advantages for learning: sparser models ensure better
generalization performance, and nonconvex objective functions are less sensitive to
noise and outliers. For this reason, numerous approaches and heuristics exist for
nonconvex optimization on classical hardware, which might prove easier and faster
to solve by quantum computing.

As in the case of computational complexity, we can establish limits on the
performance of quantum learning compared with the classical flavor. Quantum
learning is not more powerful than classical learning—at least from an information-
theoretic perspective, up to polynomial factors (Servedio and Gortler, 2004). On
the other hand, there are apparent computational advantages: certain concept classes



