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PREFACE

Linear Programming deals with the problem of minimizing or maximizing a
linear function in the presence of linear inequalities. Since the development of
the simplex method by George B. Dantzig in 1947, linear programming has been
extensively used in the military, industrial, governmental, and urban planning
fields, among others. The fopularity of linear programming can be attributed to
many factors including its ability to model large and complex problems, and the
ability of the users to solve large problems in a reasonable amount of nme by
the use of the simplex method and computers.

During and after World War II it became evident that planning and toordi-
nation among various projects and the efficient utilization of scarce resources
were essential. Intensive work by the U. S. Air Force team SCOOQP (Scientific
Computation of Optimum Programs) began in June 1947. As a result, the
simplex method was dcveloped by George B. Dantzig by the end of summer
1947. Interest in linear programming spread quickly among economists,
mathematicians, statisticians, and government institutions. In the summer of -
1949 a conference on linear programming was held under the sponsorship of the
Cowles Commission for Research in Economics. The papers presented at that
conference were later collected in 1951 by T. C. Koopmans into the book
Activity Analysis of Production and Allocation. _

Since the development of the simplex method many people have contributed
to the growth of linear programming by develgping its mathematical theory,
devising efficient computational methods and codes, exploring ngw applications,
and by their use of linear programming as an aiding tool for solving more
complex problems, for instance, discrete programs, nonlinear programs, combi-
natorial problems, stochastic. programming problems, and problems of optimal
control.

This book addresses the subjects of linear programming and network flows.
The simplex method represents the backbone of most of the techniques pre-
sented in the book. Whenever possible, the simplex method is specialized to take
advantage of problem structure. Throughout we have attempted first to present
the techniques, to illustrate them by numerical examples, and then to provide
detailed mathematical analysis and an argument showing convergence to an
optimal solution. Rigorous proofs of the results are given without the theorem-
proof format. Even though this may bother some readers, we believe that the
format and mathematical level adopted in this book will provide an adequate
and smooth study for those who wish to learn the techniques and the know-how
to use them, and for those who-wish to study the algorithms at a more rigorous
level.

The book can be used both as a reference and as a textbook for advanced
undergraduate students and first-year graduate students in the fields of in-
dustrial engineering, management, operations research, computer science,
mathematics, and other engineering disciplines that deal with the subjects of
linear programming and network flows. Even though the book’s material re-
quires some mathematical maturity, the only prerequisite is linear algebra. For
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convenience of the reader, pertinent results from linear algebra and convex
analysis are summarized in Chapter two. In a few places in the book, the notion
of differentiation would be helpful. These, however, can be omitted without loss
of understanding or continuity.

This book can be used in several ways. It can be used in a two-course
sequence on linear programming and network flows, in which case all of its
material could be easily covered. The book can also be utiljzed in a one-semestéir—
course on linear programming and network flows. The indtructor may have to
omit some topics at his discretion. The book can also be used as a text for a
course on either linear programming or network flows.

Following the introductory first chapter and the second chapter on linear
algebra and convex analysis, the book is organized into two parts: linear

-programming and networks flows. The linear programming part consists of
Chapters three to seven. In Chapter three the simplex method is developed in
detail, and in Chapter four the initiation of the simplex method by the use of
artificial variables and the problem of degeneracy are discussed. Chapter five
deals with some specializations of the simplex method and.the development of
optimality criteria in linear programming. In Chapter six we consider the dual
problem, develop several computational procedures based on duality, and dis-
cuss sensitivity and parametric analysis. Chapter seven introduces the reader to
the decomposition principle and to large-scale programming. The part on
network flows consists of Chapters eight to eleven. Many of the procedures in
this part are presented as a direct simplification of the simplex method. In
Chapter eight the transportation problem and the assignment problem are both
examined. Chapter nine considers the minimal cost network flow problem from
the simplex method point of view. In Chapter ten we present the out-of-kilter.
algorithm for solving the same problem. Finally, Chapter eleven covers the
special topics of the maximal flow problem, the shortest path problem, and the
multicommodity minimal cost flow problem. ' '

We thank the graduate students at the School of Industrial and Systems
Engineering at the Georgia Institute of Technology who suffered through two
earlier drafts of this manuscript and who offered many constructive criticisms.
We express our appreciation 'to Gene Ramsay, Dr. Jeff Kennington, Dr.
Michael Todd, and Dr. Ron Rardin for their many fine suggestions. We are
especially grateful to Silleyman Tiifekgi for preparing the solutions manual and
to Carl H. Wohlers for preparing the bibliography. We also thank Dr. Robert N.
Lehrer, director of the School of Industrial and Systems Engineering at the
Georgia Institute of Technology, for his support during all phases of the
preparation of the manuscript. Special thanks are due to Mrs. Alice Jarvis, who
typed the first and third drafts of the manuscript; and to Mrs. Carolyn Piersma,
Mrs. Amelia Williams, and Miss Kaye Watkins, who typed portions of the
second draft.

Mokhiar S. Bazaraa
John J. Jarvis
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ONE: INTRODUCTION

In 1949 George B. Dantzig published the “simplex method” for solving linear
programs. Since that time a number of individuals have contributed to the field
of linear programming in many different ways including theoretical develop-
ment, computational aspects, and exploration of new apphcations of the subject.
The simplex method of linear programming enjoys wide acceptance because of
(1) its ability to model imporiant and complex management decision problems
and (2) its capability for producing solutions in a reasonable amount of time. In
subsequent chapters of this text we shall consider the simplex method and its
variants, with emphasis on the understanding of the methods.

In this chapter the linear programming problem is introduced. The following
topics are discussed: basic definitions in linear programming, assumptions
leading. to linear models, manipulation of the problem, examples of linear
problems, and geometric solution in the feasible region space and the require-
ment space. This chapter is elementary and may be skipped if the reader has
previous knowledge of linear programming.



2 INTRODUCTION
1.1 THE LINEAR PROGRAMMING PROBLEM

A linear programming problem is a problem of minimizing or maximizing a
linear function in the presence of linear constraints of the inequality and/or the
equality type. In this section the linear programming problem is formulated.
Basic Definitions

Consider the following linear programming problem.

Minimize cx,+ cx,+ -+ + ¢, x,
Subjectto a,x;+ a;3x,+ - - - + a,,x, > b,
Ay X+ ayx,+ - - - +ayx, > b,
A Xy ¥ a,x+ - - +a,, x> b,
X, Xy s x,2 0
‘Here ¢,x; + ¢3x, +, ..., + ¢,x, is the objective function (or criterion function)
to be minimized and will be denoted by z. The coefficients ¢,, ¢,, . . ., ¢, are the
(known) cost coefficients and x,, x,, . . ., x, are the decision variables (variables,
or activity levels) to be determined. The inequality 27_,a;x;, > b, denotes the ith
constraint (or restriction). The coefficients a@; for i=12,...,m,j=
1,2,...,n are called the technological coefficients. These technological

Coefficients form the constraint matrix A given below.

Ay @ 0 4y,

Gy Gy Gy
A= . . .

A1 Q2 Lnn

The column vector whose ith component is b, which is referred to as the
right-hand-side vector, represents the minimal requirements to be satisfied. The
constraints x,, X,. ..., x, > O are the nonnegativity constraints. A set of vari-
ables x,, ..., x, satisfying all the constraints is called a feasible point or a
feasible vector. The set of all such points constitutes the feasible region or the
feasible space. '

Using the foregoing terminology, the linear programming problem can be
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stated as follows: Among all feasible vectors, find that which minimizes (or
maximizes) the objective function.

Example 1.1

Consider the following linear problem.
Minimize 2x,+5x,

Subjectto x,;+ x,>» 6
Xy, X2 0

In this case we have two decision variables x; and x,. The objective function to
be minimized is 2x, + 5x,. The constraints and the feasible region are
illustrated in Figure 1.1. The optimization problem is thus to find a point in the
feasible region with the smallest possible objective.

Feasible
region

Figure 1.1. llustration of the feasible region.

Assumptions of Linear Programming

In order to represent an optimization problem as a linear program, several
assumptions that are implicit in the linear programming formulation digcussed
above are needed. A brief discussion of these assumptions is given below.

1. Proportionality. Given a variable x;, its contribution to cost is ¢;x; and its
contribution to the ith constraint 1s a,x;. This means that if x 1s doubled
say, so is .its contribution to cost and to each of the constramts To
illustrate, suppose that x; is the amounf of activity j used. For instance, if
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x; = 10, then the cost of this activity is 10¢;. If x; = 20, then the cost is
20¢;, and so on. This means that no savings (or extra costs) are realized by
using more of activity j. Also no setup cost.for starting the activity is
realized.

2. Additivity. This assumption guarantees that the total cost is the sum of the
individual costs, and that the total contribution to the ith restriction is the
sum of the individual contributions of the individual activities.

3. Divisibility. This assumption ensures that the decision variables can be
divided into any fractional levels so that noninteger values for the decision
variables are permitted.

To summarize, an optimization problem can be cast as a linear program only
if the aforementioned assumptions hold. This precludes situations where econo-
mies of scale exist; for example, when the unit cost decreases as the amount
produced is increased. In these situations one must resort to nonlinear programs.

It should also be noted that the parameters c;, a;, and b, must be known or
estimated.

Problem Manipulation

Recall that a linear program is a problem of minimizing or maximizing a linear
function in the presence of linear inequality and/or equality constraints. By
simple manipulations the problem can be transformed from one form to another

equivalent form. These manipulations are most useful in linear programming, as
will be seen throughout the text.

A

INEQUALITIES AND EQUATIONS

An inequality can be easily transformed into an equation.'To illustrate, consider
the constraint given by 27_;a,x; > b, This constraint can be put in an equation
form by subtracting the nonnegative slack variable x, . (sometimes denoted by
s5;) leading to 2/~t % — %,e; = b, and x,,, > 0. Similarly the constraint
27.a;x; < b, is wquivalent to 27_,a;x, + x,,, = b, and x,,, > 0. Also an

equatron of the form X7_,a,x; b can be transformed into the two inequalities
20aa;x; < by and ¥7_ya,x; > b,

NONNEGATIVITY Of THE VARIABLES

For most practical problems the variables represent physical quantities and
hence must be nonnegative. The simplex method is designed to solve linear
programs where the variables are nonnegative If a variable x, is unrestricted in
sign, then it can be replaced by x/ — x where x; > 0 and x” > 0. If x;

then the new variable x/ = x; ——Ij is automatrcally nonnegatrve Also 1f a
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variable x; is restricted such that x; < u; where #; < 0, then the substitution

[ . : . ’
X; = u; — x; produces a nonnegative variable x/.

MINIMIZATION AND MAXIMIZATION PROBLEMS

Another problem manipulation is to convert a maximization problem into a
minimization problem and conversely. Note that over any region

n n
Maximum 21 ¢x,= —minimum 21 ~¢x;
j= j=

So a maximization (minimization) problem can be converted into a minimiza-
tion (maximization) problem by multiplying the coefficients of thé objective
function by —1. After the opnmxzanon of the new problem is completed, the
objective of the old problem is —1 times the optimal objective of the new
problem.

Standard and Canonical Formats

From the foregoing discussion we see that a given linear program can be put in
different equivalent forms by suitable'manipufations. Two forms in particular
will be useful. These are the standard and the canonical forms. A linear program
-is said to be in standard format if all restrictions are equalities and all 'variables
are nonnegative. The simplex method is designed to be applied only after the
problem is put in the standard form. The canonical form is also useful especially
“in exploiting duality relationships. A minimization problem is in canonical form
if all variables are nonnegative and all the constraints are of the > type. A
maximization problem is in canonical format if all the variables are nonnegative
and all the constraints are of the < type. The standard and canonical forms are

summarized in Table 1.1,
Linear Programming in Matrix Notation
A linear programming problem can be stated in a more convenient form using

) matrlx notation. To illustrate, consider the following problem.

n
Minimize Y ¢x

: n
Subjectto > a;x; = b, i
J=1

(]
—_
N
3

x>0 ;=12 ...,n
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Denote the row vector (¢, ¢;, . . ., ¢,) by ¢, and consider the following column
vectors x and b, and the m X n matrix A. - -
X b) Ay Gy . G
X2 b, a3 G ... Gy
x =] b=| . A= .
Xn bm 2,1 L Crin

Then the above problem can be written as follows.
Minimize ¢x
Subjectto Ax=b

x>0

The problem can also be conveniently represented via the columns of A.

Denoting A by {a,. a;. . . ., a,] where a; is the jth column of A, the problem can
be formulated as follows.

n
Minimize 21 6 X;
j -

n
Subjectto 3, ax=b
j=1

1.2 EXAMPLES OF LINEAR PROBLEMS

In this section we describe several problems that can be formulated as linear
programs. The purpose is to show the varieties of problems that can be
recognized and expressed in precise mathematical terms as linear programs.

Feed Mix ‘Problom

An agricultural mill manufactures feed for chickens. This is done by mixing
several ingredients, such as corn, limestone, or alfalfa. The mixing is to be done
in such a way that the feed meets certain levels for different types of nutrients,
such as protein, calcium, carbohydrates, and vitamins. To be more specific,
suppose that n ingredients j = 1,2,...,n and m nutrients i = 1,2, ..., m are

considered. Let the unit cost of ingredient j be ¢; and let the amount of
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ingredient j to be used be x;. The cost is therefore X7_¢;x;. If the amount of the
final product needed is b, then we must have X7_ x; = b. Further suppose that
a; is the amount of nutrient i present in a unit of ingredient j, and that the
acceptable lower and upper limits of nutrient i in a unit of the chicken feed are
[/ and u] respectively. Therefore we must have the constraints [/b < 27_,a,x; <
b for i = 1,2,..., m. Finally, because of shortages, suppose that the mill
cannot acquire more¢ than u units of ingredient j. The problem of mixing the
ingredients such that the cost is minimized and the above restrictions are met,

can be formulated as follows.

Minimize Xyt Xyt -+ ,x,
Supject to x+ x;o-+ x,=b
bly < apxy+apx,: -+ +a,,x,< bu)
bt",: < a21x1+ 022)(2 e +a2"x,,§ bu:’z
b, < a,x,+a,;x,: - +a,,x,< bu,
0 < x; <y
0< xy < uy
0<x, <y,

Production Scheduling: An Optimal Control Problem

A company wishes to determine the production rate over the planning horizon
of the next T weeks such that the known demand is satisfied and the total
production and inventory cost is minimized. Let the known demand rate at time
{ be g(r), and simildrly denote the production rate and inventory at ¢ by x(¢) and
y(1). Further suppose that the initial inventory at time O is ¥o and that the
desired inventory at the end of the planning horizon is y;. Suppose that the
inventory cost is proportional to the units in storage, so that the inventory cost is
given by ¢, f oy (1) dt where ¢, > 0 is known. Also suppose that the productlon
cost is proportional to the rate of production, and so is given by ¢, f ox (1) ar.
Then the total cost is f7 oleyy (1) + ¢,x(2)] 4. Also note that the inventory at any
time is given according to the relationship

(1) =y0+f0"[.x(7) —gm]ar  1€[0,7]



