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PREFACE

With the growth in speed and complexity of modern digital computers
has come an increase in the use of computers by those who wish to find or
approximate the solutions of partial differential equations in several vari-
bles. This increasing use of computers for such problems has correspondingly
interested many mathematiciang in the underlying theory for that smaller
branch of numerical analysis concerned with the efficient solution of
matrix problems arising from discrete approximations to elliptic partial
differential equations. This current interest has generated sufficient im-
portant mathematical contributions to warrant a survey of this mathe-
matical theory. Accordingly, our first major aim is to survey the basic
results pertaining to this topic.

The basic material for this book is closely aligned with modern com-
puting methods. The author was fortunate to have been associated with
the Mathematics Group of the Bettis Atomic Power Laboratory where
very large matrix problems (of order 20,000 in two dimensions!) are solved
on fast computers in the design of nuclear reactors. This valuable ex~
perience, greatfully acknowledged by the author, showed that present
usage of computers to solve large scale elliptic partial differential equations
is almost exclusively confined to cyclic iterative methods. In contrast,
non-cyclic methods—such as Southwell’s relaxation method, which has
been widely used for many years on desk calculators—have received far
less uso on computers. Accordingly, we shall look only into the mathe-
matical theory of cyclic iterative methods. Interestingly enough, the basis
for the analysis of such modern cyclic iterative methods can be traced back
to fundamental research by Perron and Frobenius on non-negative ma-
trices, and our first aim is more nearly to survey the basic results on cyclie
iterative methods, using the Perron-Frobenius theory as a basis. ,

The material given here is intended as a text for first year graduate
students in mathematics. This material, an outgrowth of courses given at
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viii PREFACE

the University of Pittsburgh (1957-58) and Case Institute of Technology
(1960-61), assumes familiarity with basic knowledge in matrix and linear
algebra. For the most part, the material makes unstinting use of familiar
matrix results and notations. But the author has not hesitated to introduce
nonalgebraic items. For example, the useful notion of a directed graph is
introduced early in Chapter 1 to help clarify the concept of irreducibility
of a matrix. Later, it plays a useful role in deriving matrix properties of
discrete approximations to elliptic partial differential equations. Similarly,
the classical notion of Padé rational approzimations of functions is used in
Chapter 8 as a basis for generating numerical methods for parabolic partial
differential equations.

To serve as an aid to the instructor using this material in the classroom,
exercises are included after each section of a chapter. These often theo-
retically extend the material in the section. Occasionally, the exercises are
numerical in nature; and even limitcd numerical experience will be of
value to the reader.

A brief summary of the contents follows: Chapter 1 introduces vector
and matrix norms, as well as directed graph theory and diagonally domi-
nant matrices. Chapter 2 discusses the Perron-Frobenius theory of non-
negative matrices. The next three chapters are basically concerned with
the analysis of variants of the successive overrelaxation (SOR) iterative
method. Chapter 6 presents several viewpoints on the derivation of differ-
ence approximations to elliptic differential equations, including the Ritz
form of the variational method. Chapter 7 is devoted to variants of the
alternating direction implicit (ADI) methods. Chapter 8 investigates
parabolic partial differential equations and obtains an association between
the nature of basic iterative methods and parabolic partial differential
equations. Chapter 9 treats theoretically the practical problem of the
estimation of optimum iteration parameters. Finally, the two appendices
contain numerical results.

While writing this manuscript, I have received valuable suggestions
from many unselfish friends, colleagues, and students. To all, I give my
sincere thanks. I especially want to thank Professors Garrett Birkhoff,
David Young, George Forsythe, and Alston Householder and Raymotid
Nelson for their encouragement and helpful comments on early manu-
scripts. I also wish to thank R. Laurence Johnston and Louis A. Hageman,
who carried out the numerical calculations; Harvey S. Price, who diligently
checked all the exercises; and Martin Levy and William Roudebush,
who carefully read the manuseript. Finally, sincere thanks are due to
Mrs. Sarolta Petro, who, with great patience and fortitude, typed all the
versions of the manuscript.

R.S.V.
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CHAPTER 1

MATRIX PROPERTIES AND CONCEPTS

1.1. INTRODUCTION

The title of this book, Matrixz Iterative Analysis, suggests that we
might consider here all matrix numerical methods which are iterative
in nature. However, such an ambitious goal is in fact replaced by the
more practical one where we seek to consider in some detail that smaller
branch of numerical analysis concerned with the efficient solution, by means
of iteration, of matrix equations arising from discrete approximations to
partial differential equations. These matrix equations are generally char-
acterized by the property that the associated square matrices are sparse,
i.e., a large percentage of the entries of these matrices are zero. Furthermore,
the nonzero entries of these matrices occur in some natural pattern, which,
relative to a digital computer, permits even very large-order matrices to be
efficiently stored. Cyclic iterative methods are ideally suited for such
matrix equations, since each step requires relatively little digital computer
storage or arithmetic computation. As an example of the magnitude of
problems that have been successfully solved on digital computers by cyclic
iterative methods, the Bettis Atomic Power Laboratory of the Westing-
house Electric Corporation had in daily use in 1960 a two-dimensional
program which would treat as a special case, Laplacian-type matrix equa-
tions of order 20,000.t

The idea of solving large systems of linear equations by iterative meth-
ods is certainly not new, dating back at least to Gauss (1823). Later,
Southwell (1946) and his school gave real impetus to the use of iterative
methods when they systematically considered the numerical solution of

t This program, called “PDQ-4,” was specifically written for the Philco-2000 com-
puter with 32,000 words of core storage. Even more staggering is Bettis’ use of a three-
dimensional program, ‘“TNT-1,” which treats coupled matrix equations of order 108,000,
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2 MATRIX PROPERTIES AND CONCEPTS

practical physics and engineering problems. The iterative method of
relazalion sdvocated by Southwell, & noncyelic iterative method, was
successfully used for many years by those who used either pencil and paper
or desk calculators to carry out the necessary arithmetical steps, and this
method was cspecially effective when human insight guided the entire
course of the computations. With the advent of large-scale digital eom-
puters, this human insight was generally difficult to incorporate efficiently
into computer programs. Accordingly, mathematicians began to look for
ways of accelerating the convergence of basic eyelic or systematic iterative
methods, methods which when initially prescribed are not to be altered in
the course of solving matrix equations—in direct contrast with the non-
cyclic methods. We will concern ourselves here only with eyclic iterative
methods (which for brevity we call <terative methods); the theory and
applications of noncyelic iterative methods have been quite adequately
covered clsewhere,t and these latter iterative methods generslly are not
used on large digital computers.

The basis for much of the present activity in this area of numerical
anslysis concerned with cyclic iterative methods is a series of papers by
Frankel (1950), Geiringer (1949), Reich (1949), Stein and Rosenberg
(1948), and Young (1950), all of which appeared when digital computers
were emerging with revolutionary force. Because of the great impact of
these papers on the stream of current research in this area, we have found
it convenient to define modern matrix iterative analysis as having begun
in about 1948 with the work of the above-mentioned authors. Starting at
this point, our first aim is to describe the basic results of modern matrix
iterative analysis from its beginning to the present.

We have presupposed here a basic knowledge of matrix and linear
algebra theory, material which is thoroughly covered in the outstanding
books by Birkhoff and MacLane (1953), Faddeeva (1959) and Bellman
(1960). Thus, the reader is assumed to know, for example, what the
Jordan normal form of a square complex matrix is.

Except for seversl isclated topics, which can be read independently,
our second atm is to have the material here reasonably self-contained and
complete. As we shall see, our development of matrix iterative analysis
depends fundamentally on the early research of Perron (1907) and Fro-
benivs (1908-12) on matrices with non-negative entries; thus, our first
aim is not only to describe the basic results in this field, but also to use
the Perron-Frobenius theory of non-negative matrices as a foundation
for the exposition of these results. With the goal of having the material
self-contained, we have devoted Chapter 2 to the Perron-Frobenius theory,
although recently an excellent book by Gantmacker (1959) has also
devoted a chapter to this topic.

{ References are given in the Bibliography and Discussion at the end of this chapter.



MATRIX PROPERTIES AND CONCEPTS @

Qur third aim is to present sufficient numerical deiail for those who are
ultimately interested in the practical applications of the theory to the
numerical solution of partial differential equations. To this end, included
in Appendices A and B are illustrative examples which show the transition
through the stages from problem fornulation, derivation of matrix equa-
tions, application of various iterative methods, to the final examination of
numerical results typical of digital computer output. Those interested in
aciual aumerical applications are strongly urged to carry through in detail
the examples presented in these Appendices. We have also included exer-
cises for the reader in each chapter; these not only test the mastery of the
material of the chapter, but in many cases allow us to indicate interesting
theoretical results and extensions which have not been covered in the
text. Starred exercises may reguire more effort on the part of the reader.

The material in this book is so organized that the general derivation
of matrix equations (Chapter 6) from self-adjoint elliptic partial differ-
ential equations is not discussed until a large body of theory has been pre-
sented. The unsuspecting reader may feel he has been purposely burdened
with a great number of “unessential” (from the numerical point of view)
theorems and lemmas before any applications have appesred. In order to
ease this burden, and to give motivation to this theory, in the next section .
we shall consider an especially simple example arising from the numerical
golution of the Dirichlet problem showing how non-negative matrices occur
naturally. Finally, the remainder of Chapter 1 deals with some fundamen-
tal concepts and results of matrix numerical analysis.

There are several important associated topies which for reasons of space
are only briefly mentioned. The analysis of the effect of rounding errors and
the question of convergence of the discrete solution of a system of linear
equations to the continuous solution of the related partial differential
equation as the mesh size tends to zero in general require mathematical
tools which are quite different from those used in the matrix analysis of
iterative methods. We have listed important references for these topics
in the Bibliography and Discussion for this chapter.

1.2. A SIMPLE EXAMPLE

We now congider the numerical solution of the Dirichlet problem for
the unit square, i.e., we seek approximations to the funetion u(z, y)
defined in the closed unit square which satisfies Laplace’s equation

Fulz,y) , Pulzy)

Py W Uze(2, Y) + un(x,y) =0,

(1.1)
0<z,y <l



4 MATRIX PROPERTIES AND CONCEPTS

in the interior of the unit square. If T denotes the boundary of the square,
then in addition to the differential equation of (1.1), u(z, y) is to satisfy
the Dirichlet boundary condition

(1.2)

u(z, y) = g(x,y), (z,y) €T,

where g (z, y) is some specified function defined on I'. We now impose a uni-
form square mesh of side A = % on this unit square, and we number the

1&)’
9% 9

% ]
v uy

I ' %
Uy Uy

910 95

X

9s 95 9% G

Figure 1

interior and boundary intersections (mesh
points) of the horizontal and vertical line
segments by means of appropriate sub-
seripts, as shown in Figure 1. Instead of
attempting to find the function w(z,y)
satisfying (1.1) for all 0 < z, y < 1 and
the boundary condition of (1.2), we
seek only approximations to this function
u(z, y) at just the interior mesh points of
the unit square. Although there are a
number of different ways (Chapter 6) of

finding such approximations of u(z, ),

one simple procedure begins by expand-

ing the function u(z, y) in a Taylor's series in two variables. Assuming
that u(z, ¥) is sufficiently differentiable, then

h?
(18)  ulzo % h, go) = u(zo, yo) = his (2o, 90) + t0ue (a1, o)

3

3 h? ,
=+ ﬁuuz(xoy y(l) + Z—qu:zz (xo, yo) E *y

h2
(1'3’) u(xﬂi Yo = h) = u(:co, yo) ES hu,(:co, yo) + g'uw (xﬂ, yO)

h? ht
=+ Eﬁuwv(xo: Y) + :ﬁuww (o, Yo) £ +--,

where the point (zo, %) and its four neighboring points (zo % h, %),
(&0, yo &= k) are points of the closed unit square. We find then that

1
(14) }?{u(xo + R, v0) + u@o — by o) + u(zo, yo + h)

+ u(xo, yo — h) — du(x, yo)}
= { Uz (o, Yo) +Upy (20, Y0)}

h2
+E{uzm(x°a Yo) + Uyyyy (%o, yo)} & RN
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From (1.1), the first term of the right side of (1.4) is zero, and if we neglect
terms with coefficients A2 or higher, we have approximately

(1.4) u(xo, Yoy = tlulms + b, o) + u(2o — h, yo) + u(xo, yo + h)

+ u(xo, yo — h)}.
If we let

Uy = u(%) %); U2 = u(%y %)J Us = u(%v g)y and w = u<§’ -%)’

and similarly g, is the value of the specified function g(z, y¥) at the origin
z =y =0, etc.,, we now define respectively approximations w,; for the
values u;, 1 < 7 < 4, by means of (1.4):

wy = ¥(ws + wa + g1 + gu),
we = {(ws -+ wi + g5 + g7),
ws = 1(wy + w2 + g2 + g4),
wy = }(w + w2 + gs + guo),

which are then four linear equations in the four unknowns w;, each equa-
tion representing the approximate value of the unknown function u(z, y)
at an interior mesh point as an average of the approximate values of
u(z, y) at neighboring mesh points. In matrix notation, (1.5) can be written
as

(1.6)

(1.5") Aw = Kk,
where _ _
[“ 1 0 -} -%] w, o+ gu |
0 1 —'} —-'} W2 i gs + g
(1.6) A= , W= , and k==
-1 -3 1 0 w; 4 g2+ g4
_"‘i‘ ‘i 0 1 N | Wy | | g8 + 10|

Here, k is a vector whose components can be calculated from the known
boundary values g.. Now, it is obvious that the matrix 4 can be written
as I — B, where

[0 0 1 17

0 011
(1.7)

&
LI
W)

1100

|1 1 0 0]
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Evidently, both the matrices A and B are real and symmetric, and it is
clear that the entries of the matrix B are all non-negative real numbers. The
characteristic polynomial of the matrix 8 turns out to be simply

(1.8) ¢(u) = det (uf — B) = p2(u® — }),
so that the eigenvalues of B are us = —3%, p2 = 0 = p3, and uy = 4, and
thus
max | u; | !
X{pi} ==
14ig4 2

Since the eigenvalues »; of A are of the form 1 — p,, the eigenvalues of
A are evidently positive real numbers, and it follows that A4 is a real,
symmetric, and positive definite matrix. As the matrix A is nonsingular,
its inverse wmatrix 4! is uniquely defined and is given explicitly by

[7 1 2 2]
(17 2 2
(1.9) A=t = ,
6lo 2 7 1
(2 2 1 7]

and thus the entries of the matrix A~ are all positive real numbers. We
shall see later (in Chapter 6) that these simple conclusions, such as the
matrix B having its eigenvalues in modulus less than unity and the matrix
A having only positive real entries, hold quite generally for matrix equa-
tions derived from seif-adjoint second-order elliptic partial differential
equations.

Since we can wriie the matrix equation (1.5") equivalently as

(1.10) w = Bw + k,

we can now generate for this simple problem our first (cyclic) iterative
method, called the point Jacobi or point tolal-step method.t If w® is an
arbitrary real or complex vector approximation of the unique (since A4
is nonsingular) solution vector w of (1.5'), then we successively define a
sequence of vector iterates w™ frem

(1.11) wimt) = Bw™ | k m 2 0,

The first questions we would ask concern the convergence of (1.11), i.e.,
does each lim w{™ exist, and assuming these limits exist, does each limit

m=—

1 Other names are also associated with this iterative method. See Sec. 3.1.
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equal w; for every component j? To begin to answer this, let
g™ = wim — w, m 2 0,

where £™ }s the error vector associated with the vector iterate w®, Sub-
tracting (1.10) from (1.11), we obtain

gmt) = Bem,

from which it follows inductively that

(1.12) g™ = Bmg®, m 2 0.
For any component 7, it is clear that lim €™ exists if and only if lim w{™
exists, and if these limits both exist then lim w{™ = w; if and only if

m~0

lim €™ = 0. Therefore, with (1.12), if we wish each component of the

error vector to vanish in the limit, we seek conditions which insure that

(1.13) lim B»e® = 0,

for all vectors £©®. But seeking conditions to insure (1.13) is equivalent
to determining when

(1.14) lim B™ = O,

m-»c0

where O is the null X n matrix. This will be discussed in the next section.

1.3 NORMS AND SPECTRAL RADII

The concepts of vector norms, matrix norms, and the spectral radii
of matrices play an important role in iterative numerical analysis. Just
as it is convenient to compare two vectors in terms of their lengths, it
will be similarly convenient to compare two matrices by some measure or
norm. As we shall see, this will be the basis for deciding which of two
iterative methods is more rapidly convergent, in some precise sense.

To begin with, let V.(C) be the n-dimensional vector space over the
field of complex numbers C of column vectors x, where the vector x, its
transpose x7, and its conjugate transpose x* are denoted by

P~

2y

RES
X =i- i x7 = [Il Ty eooe xu]’ x¥* = [j'jl Ty oo :En],

L Zn_|
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where 2, T3, +« +, x. are complex numbers, and #; is the complex conjugate
of T,

Derinition 1.1. Let x be a (column) vector of V,.(C). Then,

n 1/2
(1.15) x| = (x*x)n = (Z l x.-lz)

is the Euclidean norm (or length) of x.
With this definition, the following results are well known.

Theorem 1.1. If x and y are vectors of V.(C), then
| x1] >0, wunlessx = 0;
(1.16) if @ is a scalar, then || ax || = | a|-)| x||;
Wx+yll <=l + 1yl

If we have an infinite sequence x@, x®, x®, -+. of vectors of V,(C),
we say that this sequence converges to a vector x of V,(C) if

limz{™ =z;, foralll <j < a,

where z{™ and z; are respectively the jth components of the vectors x™
and x. Similarly, by the convergence of an infinite series 3, y™ of vectors
me=(
of V,(C) to a vector y of V,(C), we mean that
N
lim ), y™ =y, foralll £ 5 < n.
N—=@ mm=l)

In terms of Euclidean norms, it then follows from Definition 1.1 that
{{x™ ~x{|—0, m— =,

if and only if the sequence x@, x® ... of vectors converges to the vector x,
and similarly

| N

2y - y”—>0, N,

m=(

if and only if the infinite series ), y™ converges to the vector y.
mG
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Our next basic definition, which will be repeatedly used in subsequent
developments, is

DeriviTion 1.2, Let 4 = (a,,;) be an n X n complex matrix with
eigenvalues X\;, 1 <1 < n. Then
(1.17) p(A) = max| ;]
I<ign
is the spectral radius of the matrix A.

Geometrically, if all the eigenvalues \; of A are plotted in the complex
z-plane, then p(A) is the radius of the smallest diskt|z | < R, with center
at the origin, which includes all the eigenvalues of the matrix 4.

Now, we shall assign to each n X 7 matrix A with complex entries a
non-negative real number which, like the vector norm || x ||, has properties
of length similar to those of (1.16).

DeriniTioN 1.3. If A = (a,,;) is an n X n complex matrix, then

[l Ax ||
(1.18) Al sxtg)) Xl
is the spectral norm of the matrix 4.

Basic properties of the speetral norm of a matrix, analogous to those

obtained for the Euclidean norm of the vector x, are given in

Theorem 1.2. If A and B are two n X n maltrices, then

| 41l > 0, unless A = O, the null matriz;

if a1sascalar, ||ad || = |a]|-|| 4 |];
(119)
Ha+Bll<lAl+BY;
WA-BlII < All-l|B].
Moreover,
(1.20) HAa={t <l 4 -1l =x}i
Jor all vectors x, and there exists a nonzero vector y in V,(C) for which
(1.21) Wayli=HA4l-lyl

Proof. The results of (1.19) and (1.20) follow directly from Theorem
1.1 and Definition 1.3. To establish (1.21), observe that the ratio
It Ax ||/{| x|| is unchanged if x is replaced by ax, where a is a scalar.
Hence, we can write that

Al = sup || Ax{l.

Haxlj=1

T To be precise, the set of points for which | z — a | < R is called a disk, whereas its
subset, defined by | z — a | = R, is called a circle.



