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Preface

This book deals with advanced topics in the field of quantum mechanics, material which is
usually encountered in graduate student level. The book is written in such a way as to attach
importance to a rigorous presentation while, at the same time, requiring no prior knowledge,
except in the field of basic quantum mechanics. The inclusion of all mathematical steps and full
presentation of intermediate calculations ensures ease of understanding. A number of problems
are included at the end of each chapter. Sections or parts thereof that can be omitted in a first

reading are marked with a star.

It begins with a rather lengthy chapter in which the relevant mathematics of Hilbert space
developed from simple ideas on vectors and matrices the student is assumed to know. The
level of rigor is what I think is needed to make a practicing quantum mechanic out of the
student. This chapter, which typically takes four to six lecture hours, is filled with examples
from physics to keep students from getting too fidgety while they wait for the “real physics”.
Since the math introduced has to be taught sooner or later, and when they get to it, can
give quantum theory their fullest attention without having to battle with the mathematical
theorems at the same time. Also, by segregating the mathematical theorems from the physical
postulates, any possible confusion as to which is nipped in the bud.

This chapter is followed by one on the postulates, with many examples from fictitious
Hilbert spaces. Nonetheless, students will find it hard. It is only as they go along and see these
postulates used over and over again in the rest of the book. We also introduce some basic idea
and method in quantum mechanics in this chapter.

Chapter 3 introduces the formalism of second quantization and applies this to the most
important problems that can be described using simple methods. These include the weakly
interacting electron gas and excitations in weakly interacting Bose gases. The basic properties
of the correlation and response functions of many-particle systems are also treated here.

We next discuss the Coherent States and Squeezed States, Green’s Functions and Scattering
Theory and Geometric Phases in different chapters. For the limitation of class hour, we usually
choose one or two topic to study.

As I look back to see who all made this book possible, my thoughts first turn to my college
Professor. Daning Shi and Professor. Chenping Chu, my PhD. supervisor, Yue Yu, and friends

Peng Zhang and Ming Li, for they introduced me to physics in general and quantum mechanics
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in particular, and discuss many problems with me. On the family front, encouragement came
from my parents and most important of all from my wife, Joan, who cheerfully donated me to
science and stood by me throughout. Little Henry did his bit by tearing up all my books on
the subject, both as a show of support and to create a need for this one.

The approach to be presented here was tried many times at Nanjing University of Aeronau-
tics and Astronautics on graduates taking a one semester course. In all cases the results were
very satisfactory in the sense that the students seemed to have learned the subject well and
to have enjoyed the presentation. It is, in fact, their enthusiastic response and encouragement
that convinced me of the soundness of my approach and impelled me to write this book. The
book also be used by nonphysicists as well. I have found that it goes well with chemistry,
nano-science, material science majors in my classes.

Naturally, I am solely responsible for the hopefully few remaining errors and typos, and I
invite instructors and students alike to communicate to me any suggestions for improvement,

whether they be pedagogical or in reference to errors or misprints.

Jinbin Li
June 2015
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Chapter

Mathematical Tools of Quantum

Mechanics

Today quantum mechanics forms an important part of our understanding of physical phenom-
ena. Its consequences both at the fundamental and practical levels have intrigued mathemati-
cians, physicists, chemists, and even philosophers for the past century. A quantum system is
usually described in terms of certain Hilbert spaces H and linear operators acting on these
spaces. The mathematical properties and structure of Hilbert spaces are essential for a proper
understanding of the formalism of quantum mechanics. For this, we are going to review briefly
the properties of Hilbert spaces and those of linear operators. We will then consider Dirac’s
bra-ket notation.

Quantum mechanics was formulated in two different ways by Schrodinger and Heisenberg.
Schrodinger’s wave mechanics and Heisenberg’s matrix mechanics are the representations of the
general formalism of quantum mechanics in continuous and discrete basis systems, respectively.
So we will also examine the mathematics involved in representing kets, bras, bra-kets, and
operators in discrete and continuous bases.

Certain mathematical topics are essential for quantum mechanics, not only as computational
tools, but because they form the most effective language in terms of which the theory can be
formulated. We deal with the mathematical machinery needed to study quantum mechanics in
this chapter. Although it is mathematical in scope, no attempt is made to be mathematically
complete or rigorous. We limit ourselves to those practical issues that are relevant to the
formalism of quantum mechanics. These topics include the theory of linear vector spaces and
linear operators. A unified theory based on that mathematical structure was first formulated

by P. A. M. Dirac, and the formulation used in this book is really a modernized version of
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Dirac’s formalism.

The physical development of quantum mechanics begins in the Chapt.2, and the mathemat-
ically sophisticated reader may turn there at once. But since not only the results, but also the
concepts and logical framework of this chapter are freely used in developing the physical theory,

the reader is advised to at least skim this first chapter before proceeding to next chapter.

1.1 The Hilbert Space

A linear vector space consists of two sets of elements and two algebraic rules:

(1) A set of vectors ¢, ¢, x, --- and a set of scalars a, b, ¢, ---, if the scalars belong to the
field of complex (real) numbers, we speak of a complex (real) linear vector space. Henceforth
the scalars will be complex numbers unless otherwise stated.

(2) A rule for vector addition and a rule for scalar multiplication.

1. Addition rule

The addition rule has the properties and structure of an Abelian groups.

(1) If ¢y and ¢ are vectors (elements) of a space, their sum 1 + @, is also a vector of the
same space.

(2) Commutativity: ¥ + ¢ = ¢ + .

(3) Associativity: (¢ +¢) +x = ¢+ (¥ + x)-

(4) Existence of a zero or neutral vector: for each vector 1, there must exist a zero vector
¥ such that ¢ + 9 = 1.

(5) Existence of a symmetric or inverse vector: for each vector 1, there must exist a sym-

metric vector ¢ such that ¥ + ¢ = 1. We write ¢ as — later.

2. Multiplication rule

The multiplication rule of vectors by scalars (scalars can be real or complex numbers) has these
properties.
(1) The product of a scalar gives another vector. In general, if ¢ and ¢ are two vector of

the space, any linear combination at) + b¢ is also a vector of the space, a and b being scalars.

a(¥ + @) = ah + ag,
(2) Distributivity with respect to addition:

(a+ b)Y = ay + bip.
3) Associativity with respect to multiplication of scalars: a(by) = (ab).
4) For each element 1 there must exist a unitary element, 1, and zero, 0, scalar such that:

(
(
1p=gp-1=9, 0-9p=1¢-0="71.
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Examples

Among the very many examples of linear vector spaces, there are two classes that are of common
interest:
(1) Discrete vectors, which may be represented as columns of complex numbers, (a1, as,
- YT,
(2) Spaces of functions of some type, for example the space of all differentiable functions.

One can readily verify that these examples satisfy the definition of a linear vector space.

1.1.1 Definition of Hilbert Space

A Hilbert space H consists of a set of vectors ¥, ¢, x, --- and a set of scalars a, b, ¢,
which satisfy the following four properties.

1. H is a linear space

The properties of a linear space were considered in the previous section.

2. 'H has a defined scalar (inner) product that is strict positive

The scalar product of an element 7) with another element ¢ is scalar, a complex number, denoted
by (¥, ¢)=complex number. The scalar product satisfied the following properties.

(1) The scalar product of 1/ with ¢ is equal to the complex conjugate of the scalar product
of ¢ with ¢: (¥, ¢) = (¢,4)".

(2) The scalar product of ¥ with respect to a¢, + bos is

(¥, agy + b2) = a9, ¢1) + b(¥, ¢2)
(3) The scalar product of 1 with itself is a non-negative number
W, ¥)=[[YlI> >0
Where the equality holds only for 1) = 1.

3. 'H is separable

There exist a Cauchy sequence 1,, € H (n = 1,2,---) such that for every v of H and ¢ > 0,

there exist at least one 1, of the sequence for which

”UJ - wn“ <Eg



4 Chapter 1  Mathematical Tools of Quantum Mechanics

4. 'H is complete

Every Cauchy sequence of element 1, € H converges to an element of H. That is, for any v,

the relation( or defines a unique limit of M such that)

hm “w'm - 1/111” <e ( hm “1/}11 - TL'“ = 0)
o0 n—oo

n,m—
Examples

We have, corresponding to our previous examples of vector spaces, the following inner products:
(1) If ¢ is the column vector with elements a;,as,- - and ¢ is the column vector with
elements by, by, -, then (¥, ¢) = ajby +ajbs + - - -
(2) If ¢ and ¢ are functions of z, then (¢, ¢) = /w*(z)qb(;l:)w(x)d:c where w(z) is some
nonnegative weight function.

The inner product generalizes the notions of length and angle to arbitrary spaces.

1.1.2 Two Important Theorems

If the inner product of two vectors is zero, the vectors are said to be orthogonal. The norm (or
length) of a vector is defined as ||¢| = (¥,v)Y2. Norm is written as || = (¥, v)Y? in some
book , and it confuse with symbol of absolute value.

The inner product and the norm satisfy two important theorems.

1. Schwarz’s inequality

Schwarz’s inequality: |(v, ¢)| < [[¥] - [|#]]-
Proof: for given 1 and ¢, we can define a new vector x =¥ — (¢, 1)d/| ¢

(,¢)  (69)" (9, 9)"(9,¢)

2 1 2
=, )12 < %1 - ll¢l? (1.2)

So you can, if you like, define the angle between 1) and ¢ by the formula

(¥, )]
11 - 1l

cosf) =

2. The triangle inequality

The triangle inequality: [|(v + ¢)|| < [[4[ + [|&]|.
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Proof: For any complex number, its real part must be not larger than its absolute, saying

Rez < |z|. By using Schwarz’s inequality, we have

(W + ¢y + ¢)=¥]1> + 2 Re(v, 9) + 91> < |[¥]]* + 2 |(¥, 8)| + ||¢]|
<l +2 [wlliel + 11812 = (Il + lloll)? (1.3)

In both cases equality holds only if one vector is a scalar multiple of the other, i.e. ¥ = c¢.

For Eq.(1.3) to become an equality, the scalar ¢ must be real and positive.

1.1.3 Dimension and Basis of Vector Space

A set of N vectors 91,3, -+, %y is said to be linear independent if and only if the solution of

the equation

N
Zaﬂﬂi:ﬁ, ap=ay=---=any =0 (1.4)
i=1
Be careful 99 is not 0! But if there exists a set scalars, which are not all zero, so that one of the
vector can be expressed as a linear combination of the others ¢; = Z ap; (a; = —ai/aj, aj #
i#3

0), the set of {1;} is said to be linear dependent.
The dimension of a vector space is given by the mazimum number of linearly independent

vectors the space can have. For instance, if the maximum number of linearly independent

vectors, a space has, is N(i.e. ¥y, 19, -+ ,1¥n), this space is said to be N-dimensional. In this
N

case, any vector ¢ of the vector space can be expressed as a linear combination: ¢ = E a; ;.
i=1

The basis of a vector space consists of a set of the maximum possible number of linearly
independent vectors belonging to that space. These vectors ¥, s, - , %N to be denoted in
short by {v;}. are called the base vectors. Although the set of these linearly independent
vectors is arbitrary, it is convenient to choose them orthonormal. A set of vectors {¢;} is said
to be orthonormal if the vectors are pairwise orthogonal and of unit norm; that is to say, their
inner products satisfy (1;,1;) = ;5. Moreover, the basis is said to be complete if it spans the
entire space; that is, there is no need to introduce any additional base vector. The expansion
coefficients a; are called the component of the vector ¢ in the basis. Each component is given

by the scalar product of ¢ with the corresponding base vector, a; = (¢, ¢).

Gram-Schmidt theorem

Theorem  Given a linearly independent basis we can form linear combinations of the

basis vectors to obtain an orthonormal basis.
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Let us now take up the Gram-Schmidt procedure for converting a linearly independent basis
into an orthonormal one. The basic idea can be seen by a simple example. Imagine the two-
dimensional space of arrows in a plane. Let us take two nonparallel vectors, which qualify as a
basis. To get an orthonormal basis out of these, we do the following:

(1) Rescale the first by its own length, so it becomes a unit vector. This will be the first
basis vector.

(2) Subtract from the second vector its projection along the first, leaving behind only the
part perpendicular to the first (Such a part will remain since by assumption the vectors are
nonparallel).

(3) Rescale the left over piece by its own length. We now have the second basis vector: it

is orthogonal to the first and of unit length.

1.2 Dual Spaces and the Dirac Notation

Corresponding to any linear vector space V there exists the dual space of linear functionals
on V. A linear functional F assigns a scalar F() to each vector 1, such that F(ay + b¢) =
aF(¢) 4+ bF(¢) for any vectors ¢ and ¢, and any scalars a and b. The set of linear functionals
may itself be regarded as forming a linear space V' if we define the sum of two functionals as

(F1 + F2)(v) = Fi(¥) + F2(¥).

1.2.1 Riesz Theorem

Theorem  There is a one-to-one correspondence between linear functionals F in V’/ and
vectors f in V, such that all linear functionals have the form F(v) = (f,4), f being a fixed
vector, and 1 being an arbitrary vector. Thus the spaces V and V' are essentially isomorphic.
For the present we shall only prove this theorem in a manner that ignores the convergence
questions that arise when dealing with infinite-dimensional spaces.

Proof: It is obvious that any given vector f in V defines a linear functional, using F(¢) =
(f,v) as the definition. So we need only prove that for an arbitrary linear functional F we can

construct a unique vector f that satisfies F'(1)) = (f, ). Let {1;} be a system of orthonormal
basis vectors in V, satisfying (¢4, ;) = 0;;. Let ¢ = Z x;1; be an arbitrary vector in V.
From F(ay+bg) = aF (¢)+bF(¢) we have F(¢) = Z x; F'(¢;). Now construct the following

vector: f = Z F ()] ;. Its inner product with the arbltrary vectoris (f,¢) = Z F(y)x; =

F(¢), and hence the theorem is proved.
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1.2.2 Dirac’s Bra and Ket Notation

In Dirac’s notation, which is very popular in quantum mechanics, the vectors in V' are called ket
vectors, and are denoted as [1). The linear functionals in the dual space V” are called bra vectors,
and are denoted as (F|. The numerical value of the functional is denoted as F'(v) = (F|y).
According to the Riesz theorem, there is a one-to-one correspondence between bras and kets.
Therefore we can use the same alphabetic character for the functional (a member of V') and the
vector (in V') to which it corresponds, relying on the bra, (F|, or ket, | F'), notation to determine
which space is referred to. F(¢) = (f,¢) would then be written as (F|¢) = (F,%), |F) being
the vector previously denoted as f. Note, however, that the Riesz theorem establishes, by

construction, an anti-linear correspondence between bras and kets. If (F| < |F), then
(c1 Fy + coFy| = CI(FH + C;(le — |F1>Cl + |Fo)ea = e Fy + C2F2>

Because of the relation (F|y) = (F, ), it is possible to regard the “braket” (F|v¢) as merely
another notation for the inner product. But the reader is advised that there are situations in
which it is important to remember that the primary definition of the bra vector is as a linear
functional on the space of ket vectors®™.

Let us now take up the Gram-Schmidt procedure to understand Dirac notation. This simple
example tells the whole story behind this procedure, which will now be discussed in general

terms in the Dirac notation.

Let |I),|II),--- be a linearly independent basis. The first vector of the orthonormal basis
will be
I 1|7
=g = =T =1 (Where |17 = VD) (1)

As for the second vector in the basis, consider [2') = |II) — |1){1|I]) which is [II) minus
the part pointing along the first unit vector. Not surprisingly it is orthogonal to the latter:
112"y = (1I1I) — (1]1)(1]1I) = 0. We now divide |2’) by its norm to get |2) which will be
orthogonal to the first and normalized to unity.

Finally, consider |3') = |I1I) — |1)(1|I1I) — |2)(2|III) which is orthogonal to both |1) and
[2). Dividing by its norm we get |3) , the third member of the orthogonal basis. There is
nothing new with the generation of the rest of the basis.

Where did we use the linear independence of the original basis? What if we had started with

a linearly dependent basis? Then at some point a vector like |2’) or |3’) would have vanished,

@ In his original presentation, Dirac assumed a one-to-one correspondence between bras and kets, and it
was not entirely clear whether this was a mathematical or a physical assumption. The Riesz theorem shows that
there is no need, and indeed no room, for any such assumption. Moreover, we shall eventually need to consider
more general spaces (rigged-Hilbert space triplets) for which the one-to-one correspondence between bras and
kets does not hold.
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putting a stop to the whole procedure. On the other hand, linear independence will assure us
that such a thing will never happen since it amounts to having a nontrivial linear combination
of linearly independent vectors that adds up the null vector (Go back to the equations for |2’)

or |3') and satisfy yourself that these are linear combinations of the old basis vectors).

Properties of bras, kets and bra-kets

(1) Every ket has a corresponding bra: |av) = [¥)a < a* (V| = (ay)].

2) Properties of inner product: (¢|y)* = (|¢).

3) Normal is real and non-negative: (1|1) = 0 (when |¢) = |¥) it equals to 0).
4) Schwarz’s inequality: |(|#)|? < ([)(¢]0).

)
)
5) The triangle inequality: /(¢ + ¢[¢ + ) < /(¥[¥) + /(¢]9).
)
)

(
(
(
(
(

6) Orthonormal: (¢Y|p) =0, (Y|y) = 1.

(7) Forbidden Quantities: If |1/) and |¢) belong to same vector space, products of [¢)|¢) and
(¢|(¢| are forbidden. They are nonsense, since |1)|¢) and (1)|(4| are neither kets nor bras(an
explicit illustration of this will be carried out later when discuss the representation in a discrete
basis).

If [4) and |¢) belong, however, to different vector spaces (e.g. [¢) belongs to a spin space and
[1) to a angular momentum space), then the products of [1)|¢) written as 1)) ® |¢), represents
a tensor product of 1) and |¢). Only in these typical cases are such products meaningful. We

will give its other properties in Sec.1.8.

1.3 Operators

General definition

An operator on a vector space maps vectors onto vectors; that is to say, if A is an operator
and 1 is a vector, then ¢ = A1) is another vector in same space. An operator is fully defined
by specifying its action on every vector in the space (or in its domain, which is the name given
to the subspace on which the operator can meaningfully act, should that be smaller than the

whole space).

Examples

(1) Identity operator: leaves any vectors unchanged, Iy = 1.

(2) The parity operator: Paj(r) = o(—r).

(3) The gradient operator: V(1) = 9,9(r)i + Oy(r)g + 0.9(r)k.
(4) The linear momentum operator: Py (r) = —iAVY(r).

(5) The Laplacian operator: Ay(r) = 02¢(r) + 92p(r) + 02u(r).
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(6) Inverse operators, assuming it exists", the inverse A~1 of a linear operator A is defined

by the relation: A=A = AA~! = 1.

1.3.1 Linear Operator

A linear operator satisfies A(clwl +eo1hy) = cl(Awl) + cz(/izj)Q). It is sufficient to define a linear
operator on a set of basis vectors, since every vector can be expressed as a linear combination
of the basis vectors. We shall be treating only linear operators, and so shall henceforth refer to
them simply as operators.

To assert the equality of two operators, A = B, means that Ay = By for all vectors (more
precisely, for all vectors in the common domain of A and B, this qualification will usually
be omitted for brevity). Thus we can define the sum and product of operators, (A + B)y =
Ay + By, ABy = A(Bw), both equations holding for all. It follows from this definition
that operator multiplication is necessarily associative, A(BC) = (AB)C. But it need not be
commutative, AB being unequal to BA in general.

Example 1 In a space of discrete vectors represented as columns, a linear operator is a
square matrix. In fact, any operator equation in a space of N dimensions can be transformed

into a matrix equation. Consider, for example, the equation M|¢) = |¢). Choose some or-

) =3 ajlu), [6) =

thonormal basis {|u;), 7¢=1,---, N} in which to expand the vectors,

> biluy).
J
Operating on M) = |¢) with (u;| yields Z<Ui|M|Uj>aj = Z(u”uk)bk = b;, which has
J k
the form of a matrix equation, Z M;ja; = b;, with M;; = (u;|M|u;) being known as a matrix

J
element of the operator M. In this way any problem in an N-dimensional linear vector space,

no matter how it arises, can be transformed into a matrix problem.

The same thing can be done formally for an infinite-dimensional vector space if it has a
denumerable orthonormal basis, but one must then deal with the problem of convergence of the
infinite sums, which we postpone to a later section.

Example 2 Operators in function spaces frequently take the form of differential or integral
operators. An operator equation such as d,z = 1 + xd, may appear strange if one forgets that
operators are only defined by their action on vectors. Thus the above example means that
Oz [zp(x)] = Y(x) + 20,9 (x).

@ Not every operator has inverse, just as in the case of matrices. The inverse of a matrix exists only when

its determinant is nonzero.
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1.3.2 Hermitian Adjoint

So far we have only defined operators as acting to the right on ket vectors. We may define their
action to the left on bra vectors as ((¢|A)|¢) = (¢|(fi|1/;)) for all 9 and ¢. This appears trivial
in Dirac’s notation, and indeed this triviality contributes to the practical utility of his notation.
However, it is worthwhile to examine the mathematical content of last equation in more detail.

A bra vector is in fact a linear functional on the space of ket vectors, and in a more detailed
notation the bra (¢| is the functional Fy(-) = (¢, ), where ¢ is the vector that corresponds to
Fy via the Riesz theorem, and the dot indicates the place for the vector argument. We may
define the operation of A on the bra space of functionals as AF‘;,(L/)) = F¢(/iw) for all ¥. The
right hand side of this formula satisfies the definition of a linear functional of the vector 1
(not merely of the vector /iw), and hence it does indeed define a new functional, called led,A

According to the Riesz theorem there must exist a ket vector x such that

AFy(y) = (x, ¥) = Fy(¥) (1.6)

Since x is uniquely determined by ¢ (given A), there must exist an operator AT such that
x = At¢. Thus Eq.(1.6) can be written as AF; = Fj+1,. From AF,(1)) = Fy(Avp) and Eq.(1.6)
we have (¢, Az/}) = (x, %), and therefore

(At,¥) = (0, Av), for all ¢ and ¥ (1.7)

This is the usual definition of the adjoint, AT, of the operator A. All of this nontrivial mathe-
matics is implicit in Dirac’s simple equation ((¢|A)[v)) = (¢|(A|w))!

The adjoint operator can be formally defined within the Dirac notation by demanding that
if (¢| and |¢) are corresponding bras and kets, then (¢|At = (x| and A|¢) = |x) should also be
corresponding bras and kets. From the fact that (x|¢)* = (¥|x), it follows that

(p|ATy)* = (¥|Ag), for all ¢ and ¥ (1.8)

this relation being equivalent to Eq.(1.7). Although simpler than the previous introduction of
At via the Riesz theorem, this formal method fails to prove the existence of the operator Af.
Several useful properties of the adjoint operator that follow directly from Eq.(1.7) are
(cA)t = ¢* AT, where ¢ is a complex number, (A + B)t = At + B (AB)t = BTA'. In addition
to the inner product of a bra and a ket, (¢|1¢), which is a scalar, we may define an outer product
(Dyadic product), which is the formal product between a ket-and a bra-vector, [1)(¢|. This ob-
Ject is an operator because, assuming associative multiplication, we have (|1)(4|)|-) = [¢)({(¢]-)),
it projects the vector onto the state |¢) and generates a new vector in parallel to [1) with a

magnitude equal to the projection (¢|-). Since an operator is defined by specifying its action on



