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Preface

The authors have observed during their years of experience that the majority
of the biological wastewater treatment processes actually put into operation
are not designed using fundamental biological treatment principles, even
though such principles have been available for many years. The result is that
many of the installations do not operate properly and considerable time and
expense must be spent diagnosing design problems and correcting them
before satisfactory operation can be achieved. We believe that much of the
problem exists because the desigrt engineers do not have available to them a
thorough yet relatively concise compilation of the fundamental and design
aspects of biological waste treatment, presented so that the underlying
principles are truly learned. Such learning is required if the engineer is to
become a process design decision maker rather than a user of formulas. This
book is our attempt to fill this perceived gap in available information.
Even though biological processes are essential components of most waste-
water treatment systems, no text is available which covers in detail both the
theoretical and design aspects of such components. Our objective in this
book is to integrate both of these aspects into a single text which can be
used by both the student and the practicing engineer. To achieve this objec-
tive, the book is developed in the following format: (a) process fundamentals
are presented ; (b) wherever possible, these fundamentals are used to develop

xiii



xiv Preface

design relationships for a particular process; (c) a design procedure using .
these relationships is illustrated using example problems which typify the
calculations required in each process application; (d) finally, essential
réfeljence material is included at the end of each chapter. Throughout the
text, it is emphasized that process design criteria should be obtained from
laboratory investigations. However, in many instances practicing consultants
do not have the time or resources for laboratory studies. In this regard,
design information for specific treatment situations is presented which can
be particularly valuable when comparing process alternatives for facility
# siplanning purposes.

A word of appreciation is due to Elizabeth Stimmel, Pam Murdock, and
Donna Griffith who typed the manuscript for publication and to the many
graduate students who were particularly helpful in suggesting improvements
to the original draft for this book.

Larry D. Benefield
Clifford W. Randall
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Fundamentals
of Process
Ki‘netics

All biological wastewater treatment processes take place in a volume defined
by specific boundaries. Such a volume is commonly termed a reactor. Changes
in the composition and concentration of materials that occur while the waste-

-water is retained in the reactor are important factors in wastewater treatment.
These changes are caused by hydraulic transport of materials into and out
of the reactor as well as by reactions that occur within the reactor. To fully
define a reactor system and design similar ones it is necessary to know the
rate at which the changes occur and the extent of the changes.

The engineer who is designing a biological process is generally interested
in, the rates at which various components (such as organic material) are
removed from the wastewater and the rate at which biomass is produced in
the reactor. Such rates of change are important because they directly affect
the size of the reactor required for a specific degree of treatment.



1-1
Reaction Rates

Chemical reactions may be classified in one of the following ways:

1/ On the basis of the number of molecules that must react to form the
reaction product.
2/ On a kinetic basis by reaction order.

It is the latter classification that is useful in describing the kinetics of most
biological processes.

When reactions are classified on a kinetic basis, different reaction orders
may occur for variations in organisms, substrates, or environmental condi-
tions. .

The relationship among rate of reaction, concentration of reactant, and
reaction order, 7, is given by the expression

rate = (conc)” (I-1)
or by taking the log of both sides of the equation,
' log rate = n log (conc) (1-2)

By applying equation 1-2, experimental results may be interpreted to establish
a reaction order and rate. For any constant-order reaction, if the log of the
instantaneous ra{e of change of reactant concentration at any time is plotted
as a function of the log of the reactant concentration at that instant, a straight
line will result and the slope of the line will be the order of the reaction (see
Figure 1-1). The zero-order reaction results in a horizontal line, and the rate
of reaction is concentration-independent or the same at any reactant con-
centration. For the first-order reaction the rate of reaction is directly propor-

2" order

1% order

log(rate)

Zero-order

Figure 1-1. Determining Reaction
log(conc) Order by Log Plotting.
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tional to the reactant concentration, and with second-order equations the rate
is proportional to the concentration squared. Fractional reaction orders are
possible, especially in mixed biological cultures, but for the solution of many
rate problems, an integer value for the reaction order is determined or
assumed. With this condition, a more detailed evaluation of integer-order
rate equatidns can be made as a function of reaction elapsed time.

Zero-Order Reactions

Zero-order reactions are those reactions that proceed at a rate indepen-
dent of the concentration of any reactant. As an example, consider the conver-
sion of a single reactant to a single product:

A — P
reactant product

If such a conversion follows zero-order kinetics, the-rate of disappearance
of A is described by the rate equation

d[A] _ .
—E£ = KIAP =K

where ——% = rate of disappearance of A
K = reaction-rate constant

If C represents the concentration of A at any time, #, then the rate equation
can be expressed as '
dC

-S=K (1-3)

where -—% = rate of change in concentration of A with time, mass
volume™! time~! (the negative sign indicates that the con-
centration of A decreases with time; if a positive sign were
given, this would indicate an increase in concentration with
- time)
K = reaction-rate constant, mass volume~! time™~!

Integrating equation 1-3 gives the formulation
C = —Kt + constant of integration (1-4)

The constant of integration is evaluated by letting C = C, at ¢t = 0. This
implies that
C, = constant of integration

and shows thgt the integrated rate law has the form
C—C,=—Kt (1-5)



4 Fundamentals of Process Kinetics
A plot of concentration versus time for a zero-order reaction is illustrated
in Figure 1-2. Note that the response is linear when the plot is made on arith-

metic paper. x

C (concentration
of reactant
remaining at
time, t)

Figure 1-2. Arithmetic Plot of the
t (time) Course of a Zero-Order Reaction.

First-Order Reactions

First-order reactions are those reactions that proceed at a rate directly
proportional to the concentration of one reactant. Since the rate of the
reaction depends on the concentration of the reactant and since the con-
centration of the reactant changes with time, an arithmetic plot of the varia-
tion in the concentration of the reactant with time will not give a linear
response as it did for a zero-order reaction. Such a graph is prcsented in
Figure 1-3.

O

C (concentration
of reactant
remaining at

time, t)

Figure 1-3. Arithmetic Plot of the
t (time) Course of a First-Order Reaction.
Again consider the conversion of a single reactant to a single product,
A — P .
reactant product

If first-order kinetics are followed, the rate of disappearance of A is describéd ‘
by the rate equation
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~& — k) = KC (1-6)
where —Z—?: rate of change in the concentration of A with time, mass
volume™~! time™! \
C = concentration of A at any time, #, mass volume™!
K = reaction-rate constant, time~!

Integrating equation 1-6 and letting C = C, at ¢ = 0 gives an integrated rate
law of the form

: Co\ _ i
Jn(?) = Kt (1-7)
or, in the more familiar form,
log (&) =73 @9

 Equation 1-8 suggests that a plot of log C versus time for a first-order
reaction will give a linear trace, as shown in Figure 1-4.

Slope =—0.434 K

of reactant

log C (log of
the concentration
remaining at
time, t)

Figure 14. Semilog Plot ' of the
Course of a First-Order Reaction. t (time)

Second-Order Reactions

Second-order reactions are those reactions that proceed at a rate pro;;or-
tional to the second power of a single reactant. For the reaction describing
the conversion of a single reactant to a single product,

2A, — P
reactant product

The rate of disappearance of A, for a second-order reaction, is dcscnbgd by
the rate equation
dC

—F=kcy /a9

where K = reaction-rate constant, mass™! volume time™!
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The integrated rate law for a second-order reaction has the form

11 )
e =k (1-10)

Figure 1-5 indicates that an arithmetic plot of 1/C versus time will give a
linear trace, the slope of which yields the value of K.

Slope = K

1/C (reciprocal
concentration of

reactant remaining
at time, t)

Figure 1-5. Plot of the Course of a
t (time) Second-Order Reaction.

For a given set of experimental values of C and ¢, equations 1-5, 1-8, and
1-10 can be used to test for a particular reaction order. This is accomplished
by making the appropriate concentration versus time plot and noting any
deviation from linearity.

Example 1-1

Glucose was added to a batch culture of microorganisms and removal was
measured over time. The following data were obtained:

Glucose concentration Time
measured as COD (mg/{) (min)

180 0

155 ]

95 12

68 22

42 31

26 40

Determine the reaction order of the removal process by curve fitting.

solution

Make the appropriate concentration versus time plots and note any devia-
tion from linearity.



