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Preface

Our overarching aim in writing this book is to build a bridge to enable engineers
to better traverse the domains of the mathematical and physical worlds. Our focus
is on neither the nuances of pure mathematics nor the phenomenology of physical
devices but instead is on the mathematical tools used today in many engineering
environments. We often compromise strict formalism for the sake of efficient expo-
sition of mathematical tools. Whereas some results are fully derived, others are
simply asserted, especially when detailed proofs would significantly lengthen the
presentation. Thus, the book emphasizes method and technique over rigor and com-
pleteness; readers who require more of the latter can and should turn to many of the
foundational works cited in the extensive bibliography.

Our specific objective is to survey topics in engineering-relevant applied math-
ematics, including multivariable calculus, vectors and tensors, ordinary differen-
tial equations, approximation methods, linear analysis, linear algebra, linear inte-
gral equations, and nonlinear dynamical systems. In short, the text fully explores
linear systems and considers some effects of nonlinearity, especially those types that
can be treated analytically. Many topics have geometric interpretations, identified
throughout the book. Particular attention is paid to the notion of approximation
via projection of an entity from a high- or even infinite-dimensional space onto a
space of lower dimension. Another goal is to give the student the mathematical
background to delve into topics such as dynamics, differential geometry, continuum
mechanics, and computational methods; although the material presented is relevant
to those fields, specific physical applications are mainly confined to some of the exer-
cises. A final goal is to introduce the engineer to some of the notation and rigor of
mathematics in a way used in many upper-level graduate engineering and applied
mathematics courses.

This book is intended for use in a beginning graduate course in applied mathe-
matics taught to engineers. It arose from a set of notes for such a course taught by
the authors for more than 20 years in the Department of Aerospace and Mechanical
Engineering at the University of Notre Dame. Students in this course come from
a variety of backgrounds, mainly within engineering but also from science. Most
enter with some undergraduate-level proficiency in differential and integral multi-
variable calculus, differential equations, vectors analysis, and linear algebra. This
book briefly reviews these subjects but more often builds on an assumed elemen-
tary understanding of topics such as continuity, limits, series, and the chain rule.

xiii
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As such, we often casually introduce subject matter whose full development is
deferred to later chapters. For example, although one of the key features of the book
is alengthy discussion of eigensystems in Chapter 6, most engineers will already know
what an eigenvalue is. Consequently, we employ eigenvalues in nearly every chapter,
starting from Chapter 1. The same can be said for topics such as vector operators,
determinants, and linear equations. When such topics are introduced earlier than
their formal presentation, we often make a forward reference to the appropriate
section, and the student is encouraged to read ahead. In summary, most beginning
graduate students and advanced undergraduates will be prepared for the subject
matter, though they may find occasion to revisit some trusted undergraduate texts.
Although our course is only one semester, we have added some topics to those we
usually cover; the instructor of a similar course should be able to omit certain topics
and add others.

At a time not very far in the past, mathematics in engineering was largely con-
fined to basic algebra and interpolation of trigonometric and logarithmic tables. Not
so today! Much of engineering has come to rely on sophisticated predictive mathe-
matical models to design and control a wide variety of devices, for example, buildings
and bridges, air and ground transportation, manufacturing and chemical processes,
electrical and electronic devices, and biomedical and robotic equipment. These mod-
els may be in the form of algebraic, differential, integral, or other equations. Formu-
lation of such models is often a challenge that calls on the basic sciences of physics,
chemistry, and biology. Once they are formulated, the engineer is faced with actually
solving the model equations, and for that a variety of tools are of value. Our focus
is on the general mathematical tools used for engineering problems but not their
formulation or specific physical details. While we sporadically discuss a paradigm
problem such as a mass-spring-damper, we focus more on the mathematics. The
use of mathematical analysis within engineering has changed greatly over the years.
Once it was the sole means to the solution of some problems, but currently engineers
rely on it within numerical and experimental approaches. The use of the adjective
numerical has also changed over the years because of the variety of ways in which
computers may be used in engineering. It is in fact becoming more common and
necessary for extensive mathematical manipulation to be performed to prepare the
computer for efficient and accurate solution generation.

Choices have been made with regard to notation; most of the conventions we
adopt are reflected in at least a portion of the literature. In a few cases, we choose to
diverge slightly from some of the more common norms. When we do so, explanatory
footnotes are usually included. For example, the literature has a number of conven-
tions for the so-called dot product or scalar product between two vectors, u and v.
The most common is probably u - v. We generally choose the more elaborate u”-v,
where the T indicates a transpose operation. This emphasizes the fact that vectors
are considered to be columns of elements and that to associate a scalar product of
two vectors with the ordinary rules of matrix multiplication, one needs to transpose
the first vector into a row of elements. Similarly, we generally take the product of a
matrix A and vector u to be of the form A - u rather than the often-used Au. And
we use u’ - A, while many texts simply write uA. Unusually, we often apply the
transpose notation to the so-called divergence operator, writing, for example, the
divergence of a vector field u as divu = V7 - u rather than as the more common
V - u. One could easily infer the nature of the divergence operation without the
transpose, but we believe it adds unity to our notational framework. In the text,



Preface

italicized letters like a will most often be used for scalars, bold lowercase letters like
a for vectors, bold uppercase letters like A for tensors and operators, and A for
sets and spaces. In general, we use 7 for transpose, ~ for complex conjugate, * for
adjoint, and H for Hermitian transpose. The student also has to be aware that the
same quantities written on a blackboard or paper may appear differently. Whatever
the notational choices, the student should be fluent in a variety of usages in the
literature; we in fact sometimes deviate from our own conventions to reinforce that
our choices are not unique.

Our experience has been that engineering students learn best by exposure to
examples, and a hallmark of the text is that much of the material is developed via
presentation of a large number of fully worked problems, each of which generally
follows a short fundamental development. The solved examples not only illustrate
the points made previously but also introduce additional concepts and are thus an
integral part of the text. Ultimately, mathematics is learned by doing, and for this
reason we have a large number of exercises. Engineers, moreover, have a special
purpose for studying mathematics: they need it to solve practical problems; some
are included as exercises.

Presentation of many of our specific details has relied on modern software for
symbolic computation and plotting. We encourage the reader to utilize these tools as
well, as they enable exact solutions and graphics that may otherwise be impossible.
The text does not provide details of particular software packages, which often change
with each new version; the reader is advised to choose one or more packages, such as
Mathematica, Maple, or MATLAB, and to become familiar with its usage. Exercises
are included that require the use of such software. The phrase “symbolic computer
mathematics” is used to mean tools such as Mathematica or Maple and “discrete
computational methods” to connote tools such as MATLAB, Python, Fortran, C, or
C++. The problems emphasize plotting to give a geometric overview of the results.
The use of visuals or graphics to get a quick appreciation for the quality of an
approximation or the behavior of a result cannot be overemphasized.

There are a number of texts on graduate-level mathematics for engineers. Math-
ematics applied to engineering is a vast discipline; consequently, each book has
a unique emphasis. Here we have attempted to include what is actually used by
researchers in our field. To be clear, though, because it is for a one-semester intro-
ductory course, many topics are left for advanced courses. Among the topics omit-
ted or lightly covered are integral transforms, complex variables, partial differential
equations, group theory, probability, statistics, numerical methods, and graph and
network theory.

In closing, we express our hope that the readers of this book will find mathematics
to be as beautiful and useful a subject as we have over the years. Our appreciation
was nurtured by a large number of special people: family members, teachers at all
levels, colleagues at home and abroad, authors from many ages, and our own students
over the decades. We have learned from all of them and hope that our propagation
of their knowledge engenders new discoveries from readers of this book for future
generations.

Joseph M. Powers
Mihir Sen
Notre Dame, Indiana, USA
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