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Preface

It is a fact of some historical interest that although a comprehensive
and detailed theory of the electronic structure and bonding in molecules
had been developed by the year 1960 (Pauling 1960; Coulson 1961), very
few non-empirical (‘ab initio’) quantum-mechanical calculations for
polyatomic molecules were performed before that date. The theory was
built up almost wholly intuitively and empirically from an experimental
knowledge of the physical and chemical properties of molecules, coupled
with an extrapolation to polyatomic molecules of the results of (i) accurate
solutions of the Schrédinger equation for the hydrogen melecule and
molecular ion, (ii) highly approximate non-empirical calculations for
small, and mainly diatomic, molecules, and (iii) semi-empirical calcula-
tions, mainly of the Hiickel molecular-orbital type, for some larger
molecules. It was not until the late 1950s that the advent of the electronic
computer brought with it the possibility of performing accurate non-
empirical calculations for polyatomic molecules of chemical interest.
Much of the subsequent evolution of the theory of molecular structure
has paralleled, and has to a certain extent depended on, the development
of computing machines and techniques.

The advent of the computer has led to the creation of a new branch of
theoretical chemistry, computational quantum chemistry, with its own
specialized language, and with concepts that are increasingly influenced
by questions of mathematical tractability and computational expedience.
One consequence has been the creation of new problems of communica-
tion between theoretical chemist and experimental chemist, and this book
can be regarded as an attempt to bridge the widening gap between the
two. The primary concern of the book is the exposition of some of the
more important theoretical and computational techniques that have been
developed in recent years for the determination and interpretation of
molecular wave functions, with particular emphasis on the non-empirical
molecular-orbital approach. A feature of the evolution of the theory since
1960 has been the declining importance of the valence-bond approach
as a practical tool of the computational quantum chemist. Although
valence-bond theory is as valid as molecular-orbital theory, and merely
represents an alternative method of constructing molecular wave func-
tions, molecular-orbital theory has been found to be the more con-
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Preface

venient for computational purposes and, to a lesser extent, for inter-
pretative purposes.

It has been assumed that the reader is a graduate or advanced under-
graduate in chemistry, with the appropriate knowledge of mathematics
and of the applications of quantum mechanics in chemistry. Chapter 1 is
devoted to a brief discussion of the non-relativistic time-independent
Schrodinger equation for the motion of electrons in molecules, and of the
general techniques available for its solution, Chapter 2 deals with the
symmetry properties of electronic wave functions. Nearly all of the
material in these first two chapters can be found discussed at greater
length in standard undergraduate texts, but it has been included both
to make the book more or less self-contained and to introduce the nota-
tion, units, and those general concepts that are used in the subsequent
discussion. Chapter 3 is devoted to the Hartree—-Fock model of electronic
structure, and to its relation to what is commonly known as molecular-
orbital theory. Methods of proceeding beyond the orbital approximation
towards the exact solution of the Schrodinger equation are considered in
chapter 4, which also includes a brief discussion of relativistic effects.
Chapter 5 is concerned with some of the computational techniques that
have been developed for the practical implementation of the theory
developed in the previous chapters. The analysis and interpretation of
molecular wave functions is discussed in the final two chapters. Chapter 6
is concerned with the electron distribution and chapter 7 with the nature
of the chemical bond.

I wish to acknowledge with gratitude the encouragement and advice
given to me by several of my colleagues in the Chemistry Department.
Particularly I would like to thank Dr B.J. Skillerne de Bristowe for
reading much of the manuscript during the earlier stages of preparation,
and for many helpful suggestions. E.S

University of Exeter
May 1975
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1 Introduction

1.1 THE SCHRODINGER EQUATION

We are concerned in this book with the non-empirical theory of the
electronic structure of molecules. By a non-empirical (or ab initio) calcula-
tion in molecular quantum chemistry is normally meant the solution of a
time-independent Schrédinger equation

HY = EY (1.1)

in which the Hamiltonian 5 is that appropriate to any model of the
system which does not depend, either explicitly or implicitly, on the
properties of any finite number of states of the system. In the simplest
and most widely used model of a molecule, the nuclei and electrons are
assumed to be non-relativistic point charges interacting through electro-
static (Coulomb) forces only, the force acting between charges ¢, and g,
separated by distance 7 being g, ¢,/47€,7%, where ¢, is the permittivity of a
vacuum.

Consider a molecule containing v nuclei, with charges Z, e and masses
M, (e = 1,2,...,7),and N electrons, with charges — e and masses m,. Let
the position of nucleus a be given by the vector R,, whose components
are the coordinates of the nucleus in a fixed coordinate system, and let
r; be the position vector of electron 7 (i = 1,2,..., N} The Hamiltonian
for this system of point charges is’

H = E —h? 2, E h2
a=18 2M z g=18 2ﬂl
N v Z¢e2 N 22 v Z'aZﬁeﬂ

(1.2)

i=1a=14T€Ts;  i>j=1476o7; a>p=14T6R 5
where % is Planck’s constant and, for example, 7;, = [R,—»;| is the
distance between electron 7 and nucleus a. The corresponding Schro-
dinger equation for this model has been found, through many applica-
tions, to form a satisfactory basis for the description of a very wide
variety of properties of molecules, and we will be concerned in this book

almost wholly with the methods that have been developed for its solution
and with the interpretation of the solutions. Apart from a brief discussion
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in§ 4.5 of the magnitudes of the relativistic corrections to the model, we
will therefore consider as outside the scope of this book all time-dependent
phenomena, the effects of external fields, as well as all magnetic interac-
tions and other relativistic effects. Inclusion of these requires modifica-
tion either of the Hamiltonian or of the form of the wave equation itself,
although these modifications are often treated as perturbations on the
model system (§1.5).

The Hamiltonian (1.2) contains terms which describe not only the
motion of the electrons about the nuclei, but also the motion of the
nuclei with respect to each other and of the molecule as a whole in space.
The corresponding Schrédinger equation is very difficult to solve in
general, and accurate solutions have been obtained only for the simplest
molecules, H and H, (Kolos and Wolniewicz 1964). The problem is
simplified considerably however by including in the model further
assumptions which result in the separation of the electronic and nuclear
motions. These assumptions rely on the observation that the ratio m,/M,,
of the electronic to nuclear masses is a small number compared with unity,
and they are therefore consistent with our definition of a non-empirical
theory. The nuclear and electronic motions may be separated exactly for
a one-electron atom, and to a very good approximation for other atoms
(Bethe and Salpeter 1957). The resulting Hamiltonian for the internal
motion of an atom, whose nucleus has charge Ze and mass M, is

BN N Ze N 8
e L Vs - I.
8mu Ez s 4TMENT;  iS5=14TET (x-3)

where p = m, M|(m¢+ M) is the reduced mass of an electron in the atom,
and 7, is the position vector of electron 7 relative to the nucleus as origin.
The separation for molecules is of a somewhat different kind, the Hamil-
tonian for electronic motion being obtained by assuming that the nuclei
have infinite masses and, therefore, have fixed positions relative to a
fixed coordinate system. The Hamiltonian for the motion of the electrons
in this ‘fixed-nuclei’ or Born—-Oppenheimer approximation is

—K2 N N v Ze
o 8m*m, i§l L ¢§1 a=147€gTy,
e? v Z,Zzet
+ 0 (14)

3 R o o o
i>j=14M€Ts;  oa>p=14M6Ryp
The solutions of the corresponding Schridinger equation depend on the
nuclear positions, and a separate calculation of any electronic state must

2



The Schrodinger equation

be performed for each assumed molecular geometry. The stable geometry
(in the Born-Oppenheimer approximation) for any state is that with the
lowest energy.

The eigenfunctions of the Hamiltonian, (1.3) for an atom and (1.4) for
a molecule, describe the stationary electronic states of the system. They
are functions of the coordinates of the electrons, and they can always
be chosen to be normalized and orthogonal (orthonormal); if ¥, and
¥, are any two eigenfunctions,

1 if m =n, for normalization

* =
f Yo, dr {o if m % n, for orthogonality

where ¥ is the complex conjugate of ¥,,,, and f ...dr implies integration
over all the coordinates of the electrons. An important property of the
eigenfunctions is that they form a complete set of functions in the sense
that any arbitrary wave function ¥, which is not an eigenfunction of 5#
but which satisfies the same boundary conditions as the eigenfunctions,
can be expressed as a linear combination of the eigenfunctions:

Y =3C¥a
n
If the eigenfunctions are orthonormal, the coefficients are given by

Clos fT:TdT

1.2 ATOMIC UNITS

The Schrédinger equation with Hamiltonian (1.4) for a Born-Oppen-
heimer molecule may be freed of the experimentally determined quanti-
ties e, /i, €, and m, by the substitutions

H = (mee|4h*eq) ", E = (mee'|4h*e) B

and, for example, ves = (6oh?Tmge) 7l
The conversion factors are often treated.as units, atomic units (Shull
and Hall 1959). They are the Bohr radius a,, (or a,) and the Hartree

energy H.,: X . ¥
a., = € h?[mm,e* = 5.2918 X 10711 m }

H,, = moet|4h% = e?|4meya, = 4.3598 x 10718] (1)

3
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The resulting dimensionless Schrédinger equation and Hamiltonian are

HY' =EY

N 2.2 (1.6)
H'=-%% V- Z Z—-+ZZ - ZZ
{=1 i=1la= lrm 1>j= 1’” a>p=1 “ﬁ
and the primes, which convert energies and lengths to numbers, are in
practice omitted.
The use of the symbols a,, and H,, for the atomic units of length and
energy requires a few words of explanation. The most commonly used
symbol for the Bohr radius is @, but no generally accepted symbol exists
for the Hartree energy, and many authors avoid the use of special symbols
by denoting the atomic unit of every physical quantity by the abbrevia-
tion a.u. The symbols a., and H., proposed here have been chosen to be
consistent with the SI-recommended symbol R, for the Rydberg con-
-stant, which is related to the Hartree energy by H,, = 2hcR,, where ¢
is the speed of light. In the case of an atom whose Hamiltonian (1.3)
involves the reduced mass y instead of the electronic mass m,, the Schré-
dinger equation is reduced to the dimensionless form (1.6), not involving
- i, by the conversion factors obtained from a,, and H, by replacing m, by
#. The new conversion factors can be distinguished from a,, and H,
by a change of subscript to specify the nature of the nucleus. Thus the
Rydberg constant for the normal (*H) hydrogen atom is

Ry = R, myp[(my+m,)

where m;, is the mass of the proton, and the corresponding symbols for the
length and energy are ag and Hy. In general for any subscript X,

Hx = 2hcRx and axHx = €*[/4me,

In this book we shall ignore, for simplicity, the small difference in value
between m, and the reduced mass x4 of an electron in an atom; this cor-
responds to the Born—-Oppenheimer assumption of infinite nuclear mass.

Any four of the five quantities m,, e, # = h/2m, a,, and H,, may be
regarded as base atomic units for the construction of the atomic units
of all those other physical quantities which, in SI, involve only the
units of length mass, time and electric current. A list of some of the
more important quantities is given in table 1.1. Other quantities used
as units in this book include the angstrom A = 10-%m = 1.88974a.,;
the debye D = 3.3356 x 107**Cm, which is related to the atomic
unit of electric dipole moment by ea,, = 2.5418D; the electron volt

4



Atomic units

TABLE 1.1 Atomic units

Physical quantity Atomic unit Value in SI units
Mass n, 9.1096 X 10721 kg
Charge e 1.6022 X 1071 C
Angular momentum # = hl2m 1.0546 X107 J s
Length ay, = 4meghiifmee® 5.2918 X 107 m
Energy H,, = m,e*[16m%5h® 4.3598 X 10718 J
Time #i|H 2.4189 X 107 V7s
Linear momentum fifay, 1.9928 X 107 kg ms™®
Electric current eH [k 6.6237 X 1072 A
Electric potential H,le 27211 X 101 V
Electric dipole moment €ay, 8.4784x107® Cm
Electric charge density elai, 1.0812 X 10 Cm™®

eV = 1.6022 x107%], with H_, = 27.211eV; and the molar energy
LH,, = 2.6255 x 10® ] mol, where L is the Avogadro constant.

I.3 THE VARIATION PRINCIPLE

In a non-empirical calculation one attempts to find eigenfunctions and
eigenvalues of the ‘exact’ model Hamiltonian (1.6). Except for the simp-
lest systems however, a complete solution of the Schrodinger equation is
still-an intractable problem, and it is therefore always necessary to resort
to methods of finding approximate solutions. Almost all of these methods
are based on the variation principle.  _

A simple expression of the variation principle is that, given any trial
N-electron wave function ¥ which satisfies the necessary boundary
conditions for thesystem, anupper bound to the exact ground-state energy

Eois [wew dr
=———>F "
[¥*war = (x7)
Analogous inequalities exist for excited states. A consequence of the

principle is that if a trial wave function depends on a number of arbitrary
parameters, A, A, ..., A,,

‘P‘ = lF(f; Al! Az, ceny Aﬂ)

where r represents the dependence of ¥ on the coordinates of the elec-
trons, then the values of these parameters can be chosen to give the lowest
possible, and hence the most accurate, value of the energy. The energy isa

5
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function of the parameters, and the values of the parameters which give
the lowest value of the energy are obtained by solving the equations

o
A,

1

=0 (I=11,2,.c,7)

The most general type of approximate wave function commonly used
has the form

IIJI = C1¢,_+C2®2+ cen +qu)n = Zl C,¢3 (1.8)
=

where the coefficients C; are parameters, and the ®; are given N-electron
functions which satisfy the same boundary conditions as ¥ and which
may or may not depend on further parameters. The corresponding energy

(17) is

E= Enz C¥C;H; "2 C¥C;Sy (1.9)
% 4=1 ]
where : g
Hij=f®$9f®jd1, Sij=f(D;"CI)jd’r (1.10)

and the minimization of E with respect to the  coefficients gives a set of
n ‘secular’ equations

S (Hy—ES,)Cj=0 (i=1,2,...n) (1.11)
i=1

One (trivial) solution of the equations is obtained by setting all the co-
efficients equal to zero. Non-trivial solutions are obtained only if the
energy E is chosen such that the secular determinant, whose elements are

(H;;— ES;;), vanishes: det (Hy—ESy) = o
or :
Hy;—ES;; ' Hyy—ESy; .00 Hy,—~ESy,,)

Hy, —ES,, Hy—ES;, .. H,,—ES,,
=0 (1.12)

Hnl - E_Snl Hn2 - ESn2 Hnn —E‘Sfm
The secular determinant is a polynomial of degree 7 in the energy, and
it has # roots, not necessarily all different,
E1$E2$E3$... SEn

Corresponding to each energy E;, a wave function

n
1pi=j§1(1)’.cﬁ (1.13)



The variation principle

may now be obtained by solving the secular eéquations and normalization.
The resulting wave functions are orthonormal:

f‘lf’-‘“l"-dr = TS CEC, Sy =8, = {‘ BN
%y o o ki~ kKl i o l; l=f=_]

The lowest root E, is an approximate ground-state energy, and the cor-
responding function ¥, is an approximate wave function for the ground
state. In fact, the set of #z solutions are approximations for the first #
states of the system. If E{® isthe exactenergyof the ith state, then E; > E¥
asshown in fig 1.1, and E; = E® only if ¥, is the exact wave function for
the 7th state. The magnitudes of the separations (E; — E{) depend on the
functions @, included in the wave function (1.8). If the functions depend

on further parameters, Q; = Oyr; Ay Ay, ...)

then the parameters can be chosen to minimize one of the roots E; of
the secular problem.

AE

—————— Ell

E(C)

n

Pt AT By

E:m
_______ E,

E®

Fig. 1.1

Itis generally true that increasing the number of variational parameters
in a wave function results in improved accuracy of the corresponding
energy. If the wave function has a general enough form, the exact solu-
tion is approached as the number of parameters is increased indefinitely.
In particular, the ‘method of linear combinations’ outlined above pro-
vides better approximations to more and more states as the number 7
increases. In practice however the form of the wave function is often
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constrained, and cannot lead to an exact solution of the Schréodinger
equation. An example is the orbital approximation, discussed in some
detail in chapter 3, in which the wave function and energy approach
definite (Hartree—Fock) limiting'values as the number of variational para-
meters increases, but these limits do not represent an exact solution of
the Schrédinger equation. As we shall see, the wave function obtained in
this way is an eigenfunction not of the Hamiltonian (1.6) but of a different
Hamiltonian, the Hartree-Fock Hamiltonian. In this way a new model
based on the form of the wave function is obtained as an approximation
to the original ‘exact’ model, to which it reduces when the constraints
imposed on the form of the wave function are relaxed.

I.4 MATRIX REPRESENTATION OF THE SCHRODINGER
EQUATION

The Schrodinger equation for an N-electron system is a partial differen-
tial equation in 3N variables, but the method of linear combinations
discussed in the previous section shows how it may be transformed into
an equivalent matrix equation. The secular equations (1.11) can be
written in the matrix form

HC =ESC (1.14)

where H and § are square (n x n) matrices whose elements are H,; and
S;; defined by (1.10), and C'is a column matrix (vector) whose elements
are the coefficients C; of the expansion (1.8); written out in full, (1.14) is

Hll le Hln Cl Sll S12 Sln Cl
HBI H22 H2n C2 = S21 S22 S2n CZ
Hnl an ses Hn'n. Cu Snl Sn2 e Sn'n Cn

The matrix H is a representation of the Hamiltonian & in terms of the
basis of n functions @;. As has already been remarked, the solutions of the
matrix equation are approximations for n states of the system, and in-
creasing the number of basis functions leads to better approximations for
more and more states. When # becomes infinitely large and the basis
becomes complete, T the matrix equation (1.14) becomes entirely equiva-

1 The definition of a complete set given on p. 3 is sufficient for our purposes. Given a
set of functions @, (n = 1, 2, 1., M) satisfying certain boundary conditions, the set
is said to be complete if any arbitrary function ®, which satisfies the same boundary

8
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lent to the differential Schrédinger equation, having the same set of
eigenvalues and eigenfunctions, the latter being expressed in the form
(1.13) as linear combinations of the basis functions.

Given a basis therefore, the problem of solving the Schrodinger
equation is reduced to the evaluation of the matrix elements H;; and Sy,
and to the solution of the corresponding matrix equation. The only
serious problem is concerned with the choice of basis functions. Ideally,
we would like to be able to use a basis which gives both easily evaluated
matrix elements and a rapid convergence (small 7) of the expansion (1.13)
of the wave function. This is not always possible, particularly for poly-
atomic molecules.

I.§ PERTURBATION THEORY

It is often the case that the Hamiltonian S# for the system of interest
differs only slightly from the Hamiltonian 5, of a related system. One
example is a molecule in a weak external electric field for which the
Hamiltonian can be written as

- H =K+ AV (r.15)

where 5, describes the unperturbed system which is the molecule in
the absence of the field, and AV is a ‘small’ perturbation term which
describes the interaction of the molecule with the field. A is a parameter,
called the perturbation parameter (for example, the field strength), which
is a measure of the strength of the perturbation.

It is generally assumed in perturbation theory that the eigenfunctions
and eigenvalues of 5 are known, '

HXD = EOWD (1.16)

or, since in practice only a few eigenfunctions may be known, that at
least the unperturbed wave function ' for the state of interest is known.
We shall also assume, for simplicity, that the state of interest is one for
which the energy E is non-degenerate. Then, if ¥,, and E,, are the

conditions, can be expressed as a linear combination @ = Z C, ®,. If the basis

functions are orthonormal, [ @;, ®,, dr = §,,,, the coeﬂic1ents are given by
C,=/[®,0dr,

Such complete sets of functions are almost always infinite, notable exceptions being

the sets of N-electron spin functions containing 2% members (§2.7).

9
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(unknown) eigenfunction and eigenvalue of 5 for this state,
KT, = B (1.17)
it follows that in the limit A — o,
H > Hy Ey>ED, ¥,

The basic assumption of perturbation theory is that the energy and
wave function for the perturbed state may be expanded as power series in
A about the corresponding energy and wave function of the unperturbed

s E,=E®+AED + ED +...
¥, =YO+ 29D+ 22¥D 4 ...

and that these expansions are valid for the whole range of values of A
between zero and the value of interest. The quantity E{ is called the
ith-order energy and ¥ is the ith-order wave function. Substitution of
the expansions for the energy and wave function in the Schrodinger
equation (1.17) gives
(o +AV)(FO + AFD + 229D +...)

= (EQ+ AED + 2E@ + .. ) (VO + AVD + A2¥D + )

(1.18)

or
(o= EDYQ + A[(5,— ED)YD +(V - EQ)YY
+ A[(H— EQ)FRD +(V — ED)¥P — EPVO]+... =0 (1.19)

In order that the equation be satisfied for arbitrary values of A, it is neces-
sary that the coefficient of each power of A be separately zero. The zeroth-

order equation is (#y—EOFO = o

which is simply the original Schrédinger equation for the unperturbed
state. The first- and second-order equations are

(Ho—EQ)YO +(V-ED)¥? = o (1.20)
(o~ EQY¥D +(V — ED)¥D = EDPD (1.21)

We therefore obtain, if the perturbation AV is small enough, a set of
equations which can be solved in sequence to give progressively more
accurate solutions of the Schrodinger equation for the perturbed state.
In many applications it is not necessary to go beyond the first-order wave
function as this determines the energy to third order.

The solution of the perturbation equations is discussed in standard
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