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PREFACE

The widespread applicability of high-speed digital computers has made
it necessary for every modern engineer, mathematician, or scientist to have
a knowledge of matrix theory. The connection between digital computation
and matrices is almost obvious. Matrices represent /inear transformations
from a finite set of numbers to another finite set of numbers. Since many
important problems are /inear, and since digital computers with a finite
memory manipulate only finite sets of numbers, the solution of linear prob-
lems by digital computation usually involves matrices.

This book developed from a course on matrix theory which I have given
at Caltech since 1957. The course has been attended by graduate students,
seniors, and juniors majoring in mathcmatics, economics, science, or engi-
neering. The course was originally designed to be a preparation for courses
in numerical analysis; but as the attendance increased through the years,
I modified the syllabus to make it as useful as possible for the many different
purposes of the students. In many fields—mathematical economics, quan-
tum physics, geophysics, electrical network synthesis, crystallography, and
structural engineering, to name a few—it has become increasingly popular
to formulate and to solve problems in terms of matrices.

Ten years ago there were few texts on matrices; now there are many
texts, with different points of view. This text is meant to meet many different
needs. Because the book is mathematically rigorous, it can be used by
students of pure and applied mathematics. Because it is oriented towards
applications, it can be used by students of engineering, science, and the
social sciences. Because it contains the basic preparation in matrix theory
required for numerical analysis, it can be used by students whose main
interest is their future use of computers.

The book begins with a concise presentation of the theory of deter-
minants. There follows a presentation of classical linear algebra, and then
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Vi PREFACE

there is an optional chapter on the use of matrices to solve systems of linear
differential equations. Next is a presentation of the most commonly used
diagonalizations or triangularizations of Hermitian and non-Hermitian
matrices. The following chapter presents a proof of the difficult and impor-
tant matrix theorem of Jordan. Then there is a chapter on the variational
principles and perturbation theory of matrices, which are used in applica-.
tions and in numerical analysis. The book ends with a long chapter on
matrix numerical analysis. This last chapfer is an introduction to the subject
of linear computations, which is discussed in depth in the advanced treatises
of Householder, Varga, Wilkinson, and others.

The book presents certain topics which are relatively new in basic texts
on matrix theory. There are sections on vector and matrix norms, on the
condition-number of a matrix, on positive and irreducible matrices, on the
numerical identification of stable matrices, and on the QR method for
computing eigenvalues.

A course on matrix theory lasting between one and two academic quarters
could be based on selections from the first six chapters. A full-year course
could cover the entire book.

The book assumes very little mathematical preparation. Except for the
single section on the continuous dependence of eigenvalues on matrices, the
book assumes only a knowledge of elementary algebra and calculus. The
book begins with the most elementary results about determinants, and it
proceeds gradually to cover the basic preparation in matrix theory which is
necessary for every modern mathematician, engineer, or scientist.

I wish to thank Dr. George Forsythe and Dr. Richard Dean for reading

parts of the manuscript and for suggesting the inclusion of certain special
topics.

JOEL N. FRANKLIN
Pasadena, California



NOTATION USED
IN THIS BOOK

Some authors denote vectors by boldface (x, jr, z), but we shali simply denote
them by using lower-case English letters (z, y, z). If we wish to designate the
components of a vector, #, we shall use subscripts; thus, z,, ..., z, desig-
nates the components of z. Superscripts will be used to designate different
vectors; thus, z', 2%, 2° designates three vectors, and if there appears to be
any chance of confusion with the powers of a scalar, we shall enclose the
superscripts in parentheses—e.g., 2V, 2®’, 2, Thus, z{?, ...,z desig-
nates the » components of the vector 2*, whereas zi, . .., z; designates
the squares of the » components ot a vector z.

Matrices will be denoted by capital letters (4, B, C). Subscripts may be
used to designate different matrices—e.g., 4,, 4,, 4;,...—but 4, 4%, 4°
will designate different powers of the same square matrix, 4. Thus,

A* = A-A, A°*=A4-4-4, A*=A-A-4-A4, ...
A lower case Greek letter—e.g., A, «, y—will always designate an
ordinary real or complex number. A Greek letter will never be used to
designate a vector or a matrix. We will also occasionally use subscripted
English letters—e.g., c;, . . . , c,—to designate real or complex numbers. Sub-
scripted English letters wil] never be used to designate vectors; thus, z; cannot
designate a vector, although it may be used to designate the third com-
ponent of a vector z.
For the columns of a matrix A we will often use the notaticn a‘’, ...,
a™ or simply a', ..., a". For the components of a matrix 4 we will write
a,;. Sometimes we shall write

A-_—"-(a”) 1:=1,,..,m

j=1,...,

S
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Xii NOTATION USED IN THIS BOOK

to indicate that 4 is the matrix

ay; Qg @in |
Qg1 Agq Qon
A=
| Am1 Qpo e Amn_

If A has the same number, n, of rows and columns, we may write
A=(a”) i,j=1,...,n
The rows of a matrix are horizontal; the columns are vertical. Thus,

@31y -+« 5 Qzp]

may be the third row of a matrix, whereas

may be the seventh column. Since a column vector takes much space to
print, we will sometimes refer to it by the prefix “col.” Thus, the preceding
vector may be written as col (a7, ..., @n1).

The superscripted letter e has a particular meaning throughout the book.
The vector e’ is a column-vector with its jth component equal to 1 and
with all other components equal to 0. Thus, if there are five components,

By 0| 0] 0] 0
0 1 0 0 0
el =10 | e =10 ed=1|1/| et =10 e’ =10
0 0 0 1 0
0_ 0 |0 0] 1]
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l DETERMINANTS

1.1 INTRODUCTION

Suppose that we wish to solve the equations

22:1 T 73:2 = 4:

1
3z, + 8z, =5 &)

To solve for z; we multiply the first equation by 8, multiply the second
equation by 7, and subtract the resulting equations. This procedure gives

[(8:2) — (7-3)]x; = (8-4) — (7-5)

Thus, 2, = —3/—5 = 3. To find z,, multiply the second equation by 2,
the first equation by 3, and subtract. The result is |

[(8:2) — (7:3)]w, = (2:5) — (3-4)

Thus z, = —2/—5 = £. To generalize these equations, write

17 Qy9ly — b,

Ao 1T T Aoy = b,

In the example (1)

a,; = 2, a, =1, b, =4

ay = 3, Uyy = 8, b, =



2 DETERMINANTS | sEc. 1.1

Solving for z, and z,, we find

(@11@99 — @13@91)2; = 0,@y5 — bsaty,y

(2)
(11897 — @13091)%; = @y by — @910,
If we introduce the notation
a d
ab — cd = (3)
¢c b |
formula (2) yields
b, Q19
z, = by, @y _ b as; — byay,
Ay Qg Ay Qg — Qg1 A9
Qg1 Qg
(4)
a,;; b
Z, — @y b, _ a0, — @y b,
a1 Qs @11 Qg9 — Qg1 A9
A9y Qgq
if the denominator in each fraction is not zero.
A rectangular collection of numbers is a matriz. Thus,
@y alz_ . -*‘111 77 b,
and (5)
| Ag) Qgg_ | Qg1 QAgy bﬂ_

are matrices. So is the number 17—a single number is a 1 X 1 matrix.
Systems of linear equations are completely specified by the matrices contain-
ing their coefficients and by their right-hand sides. 4 vector is a matrix with
only one column or only one row. Thus

[@;,2,5,] and (6)

are vectors. d'he first i8 a row vector; the second, a column vector.

A determinant is a single number computed from a square matrix. We
speak of “the determinant of a matrix,” and in the next section, we shall
define the determinant of an n X n matrix. For n = 2 we define

a d a d
=ab — cd = (7)

d
det
ecb_ c b




sEc. 1.2 DETERMINANTS 3

For example, the collection of four coefficients

3

r— ——

from equations (1) is a matriz with a determinant that is the single number

=16 — 21 = —5
3

As we saw in (4), determinants appear in the solution of linear equations.

1.2 THE DEFINITION OF A DETERMINANT |

We wish to generalize our solution of two equations in two unknowns to
n equations in n unknowns. For n = 3 write

anZ; + 013%y, + a,32; = b,

A91Z; + Age®y + @933 = b, (1)

A51 %1 + A3e%y + A33%2 = b;
If 2, and z; are eliminated, we can obtain by a long computation the formula
Axl — A: (2)
where

A = a),045033 + @1309,@39 + 1909303,

(3)

— Q1 Qg3039 — Ay19Q91A33 — Ay3AgeQa

and where A, is found by substituting b,, b,, b;, respectively, for a,,, a,,, as;
in the expression for A. A second enormous computation would yield

A:L‘g = Ag (4)

where A, is found by substituting b,, b,, b;, respectively, for a,,, a,,, @33 In
the expression for A. A third computation would give

Azy = A, (5)

where A; is found by substituting b,, b,, bs, respectively, for a,s, Ggs, @ss.
In a later section these results will be proved and generalized. Here we only
wish to motivate the definition of the determinant.



4 DETERMINANTS SEC. 1.2

Every term in the expression for A has the form a,;a,.a; where 3, k,
is a permutation of 1, 2, 3. With each term there is a sign +1 = (3, &, 1),
which we call the sign of the permutation j, k, 1. Thus

8(1, 2, 3) = 1, s(3,1,2) =1, 82,3,1)=1 n
s(1,3,2) = —1, $(2,1,3) = —1, $3,2,1) = —1 ) |
Evidently, |
sk ) =1 if (k— ) — i)l — k) >0 -
s(j, k, 1) =—1  if (k=) — 5 — k) <O
Now (3) takes the form
A= 2 8(),k, l)aazas (8)
(J, k1)

where the summation extends over all six permutations j, k, .
For an n X n» matrix (a;)(z,5 =1, ..., n) we define the determinant

A as the sum of n! terms

= 8(91, -y In R 9
c.f:.?..in) ()1 In) Gy, @y, Qnj, (9)

The summation extends over all »! permutations 5, ...,7, of 1, ..., n.
The sign s(jy, ..., Jn) 18 defined as

8(J1s « 1 Jn) = Bignl<H (Ja — J») (10)

p<qgan

In other words, s = 1 if the product of all 3, — j, for ¢ > p 18 positive;
s =— —1 if the product is negative.

For example, the determinant of a 5 X 5 matrix has 120 terms. One of
the terms is —a,;;a,523,@,,a5,. The minus sign appears because

$(3,5,1,2, 4) = sign (5 — 3)+(1 — 3)(1 — 5)-(2 — 3)2 — 5)(2 — 1)
(4 — 3)(4 — 5)(4 — 1)4 — 2)
= (1)+(=1)(=1)(=1)(=1)(1)- (1) (=1)(1)(1) = —1

It should be emphasized that so far we have proved nothing. We merely
have a definition (9) which we hope will be useful. For n = 2, the definition

gives

A = a,,@9; — Qy9Qy;

which is consistent with the definition given in the preceding section. For
n = 1, we define A = a,,, (1) = 1.
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PROBLEMS

1. Verify formula (7) for the six permutations in formula (6).

2. In the expansion (9) of the determinant of a 7 X 7 matrix there will be
a term -+ a;;@.40350,,0536327;- 18 the sign plus or is it minus?

3. Consider the equations
Ly — XLg + Ty = 2
2:!:1 + X9 — Ty = 0
3:!71 + 23:2 == 3.73 — 4

Evaluate the determinants A, A, As, A; and solve for z,, z,, 3 by formulas
(2), (4), and (5).

/

1.3 PROPERTIES OF DETERMINANTS

The definitions (9) and (10) in the last section show that, to study
determinants, we must study permutations.

Theorem 1. If two numbers in the permutation j,, . .., ], are interchanged,
the sign of the permutation 1s reversed. For example,

8(5,1,3,2,4) = —s(5,4,3,2,1)

Proof. Suppose that the two numbers are adjacent, say k and [, in the
_permutation j, ..., kI, ..., j,. When k and [ are interchanged, the prod-
“uct 11 — J-) for 8 > r is unchanged except that the single term I — k
becomes k — [. Therefore, the sign is reversed.

If & and ! are not adjacent, let them be separated by m numbers. Move
k to the right by m successive interchanges of adjacent numbers so that k
is just to the left of I. Now move I to the left by m - 1 successive inter-
changes of adjacent numbers. The effect of these interchanges is simply to
interchange k and [ in the original permutation. Since the sign is reversed an
odd number of times, namely m + m + 1 times, the sign is reversed when
k and ! are interchanged.

Theorem 2. Let the permutation j,, ..., j, be formed from 1,2, ..., nbyt
successive interchanges of pairs of numbers. Then s(j,, . . ., jn) = (—1)".

Proof. According to the last theorem, the sign of the permutation
1,2, ...,n is reversed ¢ times as the permutation j,, ..., j, i8 formed. The
result follows because s(1, 2, ..., n) = 1. For example,

s(4,3,2,1) = —s(1,3,2,4) = s(1, 2,3,4) =



