UML 5 ifij] X} R 3 05 B 1§

oML
AR At

APPLYING USE CASE
DRIVEN OBJECT

MODELING WIHT UML
AN ANNOTATED E-COMMERCE EXAMPLE

DOUG ROSENBERG . .
KENDALL SCOTT &

I BoocH E
IfcoBson

i Bl

=P A 4 % B @

Www.sciencep.com

UML 5 fim st %% it 2 AH

] UML #{TH R REE

Doug Rosenberg r
Kendall Scott G

H4 8 % K

moEE A

AU TR G RGENEH, RN HT U LR 4 D RBEI B i, AR
g2, Etodr. UFR. e EEONE, SEST Emainidie. BRER. So1E, 5
AP EH R R R RN R,
English reprint copyright©2003 by Science Press and Pearson Education North Asia Limited.
Original English language title: Applying Use Case Driven Object Modeling with UML: An Annotated
e-Commerce Example,1* Edition by Doug Rosenberg and Kendall Scott, Copyright©2001
ISBN 0-201-73039-1 :
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

RFHEARILNESE R CREEPEEFE. W UFHITRR AT EEE®BX) HERIT.
A HESF Pearson Education(B A 8(E H SN BOLD iR . AR EANEHIE.

ET: 01-2003-2544

EHZERRSE (C1P) B

F UML #47 Bl % 8 3 #i=Applying Use Case Driven Object Modeling With UML:An Annotated
e-Commerce Example/ (3£) F#HE (Rosenberg,D.), (£) HEMEF (ScottK.) E —ELEEk. —
JEx: RleEmREE, 2003

ISBN 7-03-011406-X

[LA... 1.O%.Q%H... ILEORXMNRES—UML—EFRE—EL V.TP312

o B iR A P01 CIP BB 8 F (2003) % 030812 &

R i BRI/ TiEHIE: BRE
A4 AR/ G AFALRHLHE
4 2 2 B B HUR
LA fmAI B 165
HEBX 4 H%:100717
http:// www. sciencep.com
o4 ® 3 5 ENR
FEHBERT JSHFEBELE

*

2003ESHE — M FFA: 787X960 1/16

200345 AE—XER B3k: 1012

¥ 1—2 000 F¥: 197 000
Efft:25.00 5T

(HERRR A, RUAFAEAREEE)

FENEI S

S AL AE A TR B S RS (R T R, HON A BRI K, &8
ST E N R R R R o, AR 2. XBREIS TR AR S R A Ze
PR, 20 42 60 FEACHIEKFEHLE AN TEERHUA R B IR TR T EHA BRI A
BN, TREEBFETEMN 60 FRZEX LA FHTF LEYHIT R, SEF 70
ERGEALHI BT .80 ERMI ML SR IT & ik, ERE M RETTRIT .

T 6] W B BB T & 7 vk A SR AL FE R TRV R SE (R e RIF R T BURBEA R J&
TRA, EBANE. B, R, HESARERNELIN, RIFRETTRELE
R R E A SRR, TR KRE LR T N EEXREARARRT
BFRIHES, UG XA 6 RN BE, BT m xR r it

20 tH42 80 4EUK 90 4501, Zefa AL T JLHFrmE R RNt ik, K,
Booch, Coad/Yourdon , OMT #1 Jacobson %55 2:4% 5 1 il [X R AT R A B IZIAA]
BRI o S A X SR LS MR N A, BIMESESAHRE, & BHR ERFRRE
BAR, Eid 90 FAAREFERRZEMSE, ANZHARBIAR KT ERA RS
SRR, XA HAESBRANE, bz R EETaE E%s; FE&MT
EHEABAERKMER, AHTFH—BHEHSUME. EXMELT, G—BBES
(UML)F 90 SR RGBT AR

UML =R AR T = m X R A7 58 €K G. Booch, J. Rumbaugh 1 L
Jacobson HIiE S1E1E. MATAZFI PRI T KER FAMEERE, Ff UML (TS
FF RIS B T UM —Ror ik, JFERET AP W HET it — 50 R
FIPLE . UML AT BF AN RSB RIGEWE T FEE, SRAMERKNRRE,
SR — BRI XA . 1997 4E 11 A UML 8 OMG HEUEA RN FRHER BEE
5. RS R UE P RGR i AR RS SE EEEGE & B bR,

UML FEIBEMIE CHE XA HEERM T RERN TIE, DESFRT EIE RGN
EVEEE USROS, M FERIRABIEES, SR
15 X S SR T & . UML WILI—F@BEFHESEM, FRESFEPH—K
PFAKRE . REAEMNES¥WAEE CEATEZRIG, B EEX) EImgsss 4
FE DR SR 1L o e . _

M UML WBHRATT G, 23 TiHHEN= LR HER, OMG KRMAKAF
F SRR EHE L T SChR B Tk ARHERI AL, (A BRBZHAF . B8 ZH1A

ii A UML #t47 A sUst § a4
FRHAGEMEMERNAGERE, NEREERE. BESEWRSE. mANENR
G . HHRFRE. FEKESE. BIELEZHTREBETE. REEHE . IB88H,
EEEHHRSFE. mHERNEMUEPRTFHHENESG, BB FIEREGRS, flin
it SRR, s BAMEE 51T IR, F5%,

£ UML BhEE R ML NRA D, BHBIE T al— MR KGR, B E
fi (9 UML2.0 ffiA-K R X UML 89 X —KE KHISGH . R UML H &5 S 7%k .
APATE . KR REEGEHE, AL TR A RS

AMNBRRET SHEEFREARM UML H XM 12 445, R8T X0 5 8RR
KRB KL UML MHRTFRSES . B R REEHISHR 5L RNE X
BENAS. (HFMNRRGEERILIT) FEHS TR REOERS . #5RtT.
RAITE . A . BB DL B A R 45 M9 S5 LA S T [% 52 AR 4008 oo i 3 0 28
WHIRSHE; (A UML #fTHRM SR EE) FENR T EEXNROFTREE . 2
BrEx . Wi EP AR ES T SHEAR; (REARER) M ETER AN
P EEFENSHRVNESEAR; (UML EE3Fe it 2Ea) N E T2 86w H
X SR FEE HITR A B A

¥ K UML e SIS HE A X LA . (UML 2R RGEF R) 1he T #1758
B RGEF ERFENT UML $H79 B AR; (FH UML M Web NIRRT) tHE T2
Fi UML #47 Web R BTN ZEBHEA S, (HEMNRRGEMR: S8, 1
A5 THEY AATH UML WA TR R S A M E R RS TR (MR,
P . HEZRS UML RiA) $HE T ez B UML X1 [a) 5 5 T £ AR —— i (4-HE 2R 4%
REMH T B:%ME. (UML 5 Visual Basic N FBRFEITE) FEIFE T M UML EEF]
Visual Basic #2/F BB S Ak

MEEESRBREHARGAFERE: (COM BFL2) M (ATL ERNE) , &
ABT T H A R RBRF B AR —COM #l ATL i ARKEHHEIT S5HAAE,

iBAH —4 (Executable UML HERNE Y , XAEBNFTHH4T UML HHESER X
FEAR, FEERAMRBIE SR E B BN AT, tWREBFEHRREFE
B — R R

BZ, REBIYRANELE THRFEFRAPNEIBERIN T RS8R, F
FHEIE SRS U EEE AR | FIRRBERETREANNE, AEAREEE R
B TR, ATLAGE, B—A#REH,

FETI, BB A RREMREREEXES, SRKRE. #IMR.

AFKEFHEME HFSK L

Preface

Theory, in Practice

In our first book, Use Case Driven Object Modeling with UML, we suggested that the differ-
ence between theory and practice was that in theory, there is no difference between theory and
practice, but in practice, there is. In that book, we attempted to reduce OOAD modeling the-
ory to a practical subset that was easy to learn and pretty much universally applicable, based
on our experience in teaching this material to people working on hundreds of projects since
about 1993,

Now, two years after hitting the shelves, that book is in its fifth printing. But even though our
work has been favorably received, it seems like the job isn’t all the way done yet. “We need to
see more use case and UML modeling examples” is a phrase we’ve been hearing fairly often
over the last couple of years. And, as we’ve used the first book as the backbone of training
workshops where we apply the theory to real client projects, it has become clear that the pro-
cess of reviewing the models is critically important and not well understood by many folks.

So, although we present a fairly extensive example in our first book, we convinced Addison-
Wesley to let us produce this companion workbook, in which we dissect the design of an
Internet bookstore, step-by-step, in great detail. This involves showing many common mis-
takes, and then showing the relevant pieces of the model with their mistakes corrected. We
chose an Internet bookstore because it’s relevant to many of today’s projects in the Web-
driven world, and because we’ve been teaching workshops using this example and, as a
result, had a rich source of classroom UML models with real student mistakes in them.,

We collected some of our favorite mistakes—that is, the kind of mistakes we saw getting
repeated over and over again—and built this workbook around those models. And then we
added three new chapters about reviews-—one on requirements reviews, one on preliminary
design reviews, and one on critical design reviews.

What really makes this book unique, though, is the fact that you, the reader, get to correct the
mistakes.

The Premise

After we give you an overview of the ICONIX process in Chapter 1, four of the seven subse-

quent chapters address the four key phases of the process in some detail. The format of each
of these chapters is as follows:

viil

PREFACE

The first part describes the essence of domain modeling (Chapter 2), use case modeling
(Chapter 3), robustness analysis (Chapter 5), or sequence diagrams (Chapter 7), and
places the material in the context of the “big picture” of the process. In each of these
chapters, you’ll work through pieces of the Internet bookstore example, and then you’ll
see an overview diagram at the end of the chapter that brings the relevant pieces together.
We present fragments of ten different use cases in Chapter 3; we carry five of these for-
ward through preliminary design and detailed design in Chapters 5 and 7, respectively.
(The fragments of class diagrams that appear in Chapter 2 also trace into the use case text
and to full class diagrams that appear in Chapters 5 and 7.)

The next section describes the key elements of the given phase. Each of these sections is
basically a condensed version of an associated chapter in Use Case Driven Object Model-
ing with UML, with some new information added within each chapter.

The following section describes the top 10 mistakes that our students tend to make during
workshops in which we teach the process. We’ve added five new Top 10 lists in this book:
Top 10 robustness analysis errors, Top 10 sequence diagramming errors, and Top 10 mis-
takes to avoid for each of the three “review” chapters.

The final section presents a set of five exercises for you to work, to test your knowledge
of the material in the chapter.

The following aspects are common to each set of exercises:

There’s a red box, with a white label, at the top of each right-hand page. For the domain
modeling and use case exercises, this label takes the form Exercise X; for the robustness
analysis and sequence diagram exercises, the label takes the form of a use case name.
{(We’ll explain the significance of this soon.)

There are three or four mistakes on each right-hand page. Each mistake has a “Top 10”
logo next to it that indicates which rule is being violated.

The left-hand page on the flip side of each “red” page has a black box, with a white label,
at the top. Corrections to the errors presented on the associated “bad” page are explicitly
indicated; explanations of the mistakes appear at the bottom of the page.

Your task is to write corrections on each “bad” exercise page before you flip it over to see the
“good” exercise diagram.

To summarize: Chapter 2 presents classes used by the ten sample use cases. Chapter 3 pre-
sents fragments from all of those use cases. Chapters 5 and 7 present diagrams connected with
five of the use cases. The idea is that you’ll move from a partial understanding of the use

cases through to sequence diagrams that present full text, and some of the associated elements
of the detailed design, for each use case.

‘What about the other three chapters, you ask?

Chapter 4 describes how to perform requirements review, which involves trying to ensure
that the use cases and the domain model work together to address the customers’ func-
tional requirements.

ACKNOWLEDGMENTS

* Chapter 6 describes how to perform preliminary design review (PDR), which involves
trying to ensure that robustness diagrams exist for all use cases (and are consistent with
those use cases), the domain model has a fairly rich set of attributes that correspond well
with whatever prototypes are in place (and all of the objects needed by the use cases are
represented in that model), and the development team is ready to move to detailed design.

* Chapter 8 describes how to perform critical design review (CDR), which involves trying
to ensure that the “how” of detailed design, as shown on sequence diagrams, matches up
well with the “what” that the use cases specify, and that the detailed design is of sufficient
depth to facilitate a relatively small and seamless leap into code.

All three of these review chapters offer overviews, details, and top 10 lists, but we don’t make
you work any more exercises. What these reviews have in common is the goal of ensuring
consistency of the various parts of the model, as expressed on the “good” exercise diagrams.

The Appendix contains a report that summarizes the model for the bookstore; you can down-
load the full model from http://www.iconixsw.com/WorkbookExample.html. The Appen-
dix contains all of the diagrams that appear in the body of the book, but the full model
includes design details for the other five use cases. This allows you to go through these use
cases as further exercises, and then compare your results to ours; we highly recommend that
you do this.

Cool premise, isn’t it? We’re not aware of another book like this one, and we’re hoping you’ll
find it useful in your efforts to apply use case driven object modeling with UML.

Acknowledgments

Doug would like to thank his intrepid crew at ICONIX, especially Andrea Lee for her work
on the script for the Inside the ICONIX Process CD, which we borrowed heavily from for
Chapter 1, along with Chris Starczak, Jeff Kantor, and Erin Arnold. Doug would also like to
thank Kendall for (finally) agreeing that yes, this woul/d make the book better, and yes, we do
have time to add that, and yes, the fact that R comes before S does mean that Mr. Rosenberg
has more votes than Mr. Scott. [Co-author’s note to self: Get name legally changed to Scott
Kendall before the next book comes out. That Il teach him.]

Doug and Kendall would like to thank Paul Becker and all the fine folks at Addison-Wesley
(including Ross Venables, who’s no longer there but who got this project off the ground) who
somehow managed to compress the production schedule to compensate for the delays in the
writing schedule (which are all Kendall’s fault). We’d also like to thank the reviewers of the
manuscript, especially Mark Woodbury, whose incisive comments about “defragmenting” the
example gave us the push we needed to get it the point where we think it’s really, really cool
as opposed to just really cool. And, we’d like to thank Greg Wilson, who reviewed our first
book for Dr. Dobbs’ Journal, liked it, and suggested that we write a companion workbook.
Specifically, he said: “The second criticism of this book is one that I thought I'd never make:
It is simply too short. Having finally found a useful, readable, and practical description of a
design-centered development methodology, I really wanted a dozen or more examples of each

ix

PREFACE

point to work through. If the authors were to produce a companion workbook, I can promise
them that they’d have at least one buyer.”

Finally, Kendall would like to thank Doug for raising the art of snarkiness to a level that
makes Kendall look like a paragon of good cheer in comparison to Doug.

Doug Rosenberg Kendall Scott

Santa Monica, California Harrison, Tennessee

May 2001 May 2001
dougr@iconixsw.com kendall@usecasedriven.com

http:/'www.iconixsw.com http://www.usecasedriven.com

Contents

PLEIACE ...t ervte v tbeaees e e eea s s veersas sessnas s esanessatessesssortbeassase s easbbesibtses abenrsnassantanen xi
Theory, in Practice
THE PIEINISE ..ovvserieeetcteitcsvrsns s ese s eve e besasss st sbassssa s esesesnossrensssasassnassessasssotnssessssssnssrsssn
Acknowledgments

Chapter 1: INtroduction ...t e ssenees
A Walk (Backwards) through the [ICONIX Process
Key Features of the JICONIX PrOCESSocucvoieiieeienienirn st nneeaencacen '
Process FUNAAMENLALSccevererreerneenierniermisisiissrsss s sissesssssessmmsasess snsssesesssssssassssns
The Process in a Nutshell

Requirements List for The Internet Bookstore .16
Chapter 2: Domain Modeling................cocncnisnsnnnnnns e 17
The Key Elements of Domain Modeling ...t 18
The Top 10 Domain Modeling EITOTS ...t sronsnessanensees 19
EXBICISES......cvevvereverencsrcererestrrciseses s ecssacec e sasissbes s s s b s s s bbb s eas bt e p s as et s g sens 22
Bringing the Pieces TOZEthEr ...ttt s s s sssases 33
Chapter 3: Use Case MOElINE ... sssessssasesses 35
The Key Elements of Use Case MOENNgcvvcvurrcineimeicicecnisinciseinsse o 36
The Top 10 Use Case MOAElNg EITOLScovcrrrmmmcecerieisiisessssessssssassssee assns 37

EXEICISES.....oovueremsemrrsccanisesnascases st tsseneasensasssbest s sssas asbesssssnssissessssnsastobasnssbssonssssasessrstasaransens
Bringing the Pieces Together

Chapter 4: Requirements Reviewcccouenene.

The Key Elements of Requirements ReVIEW ... e 53
The Top 10 Requirements Review EITOTS.......ccciecoiicrivicicicnciie e 56
Chapter 5: Robustness ANALYSIs.............cocoooeneeincenincccr s 59
The Key Elements of RObustness Analysisoccvcercccmecmimcmncnnmnnaninesiennn. 61
The Top 10 Robustness Analysis EITOTS ... 64
EXETCISES....vvuvrverrrrrersensinescueiesaeasssescaeraesessisera e satsasss ssassasass st st sesonssssssi serassss sisssssssbossanassorers 66

Bringing the Pieces TOGEhETcvmvmnimenecseiess s anes LTI

iv

CONTENTS

Chapter 6: Preliminary Design Review ..o 79
The Key Elements of Preliminary Design Reviewccocovcercvvverrvcvnercseenenn. 79
The TOp 10 PDR EITOLS ...t oo e 82

Chapter 7: Sequence DI2GIamscoooiiincinen st ses s esess s seessessnnes 85
The Key Elements of Sequence Diagrams.............uvciiiricreevesnneenssssesesnsessnenens 85
Getting Started with Sequence DIiagrams..........ccocoivveerercevrevnenese i esens 87
The Top 10 Sequence Diagramming EfTOrScoo.cooevreivimrrineereereesenmsonsssiss s 89
EXOICISES. ..coneeciecuieriee it ettt ies et st e sassas s ssnss s sae s rs st sbesseessses s srsmenassoneas 92
Bringing the Pieces TOZELhETcoverrrrorecnsrensinnrsinsisssissssessessssessssssesssnessessessssans 103

Chapter 8: Critical Design ReVIEW ..o ieesssssessesesess s ssssesseees 107
The Key Elements of Critical Design ReVIEW.....ccinmmionmmessmrssesssmessmsnsesssssnonsenes 107
The Top 10 CDR Errors

Appendixcccoennenenns et e A St e e e e seda et s e ne st r e e n st preseesResrerenann 115

BIDHOGraphycooieiiiiii ettt e s et s sse s eneasser e s e e sersaneneaneserebesrens 147

Chapter 1

Introduction

The ICONIX process sits somewhere in between the very large Rational Unified Process
(RUP) and the very small eXtreme programming approach (XP). The ICONIX process is use
case driven, like the RUP, but without a lot of the overhead that the RUP brings to the table.
It’s also relatively small and tight, like XP, but it doesn’t discard analysis and design like XP
does. This process also makes streamlined use of the Unified Modeling Language (UML)
while keeping a sharp focus on the traceability of requirements. And, the process stays true to
Ivar Jacobson’s original vision of what “use case driven” means, in that it results in concrete,
specific, readily understandable use cases that a project team can actually use to drive the
development effort.

The approach we follow takes the best of three methodologies that came into existence in the
early 1990s. These methodologies were developed by the folks that now call themselves the
“three amigos”: Ivar Jacobson, Jim Rumbaugh, and Grady Booch. We use a subset of the
UML, based on Doug’s analysis of the three individual methodologies.

There’s a quote in Chapter 32 of The Unified Modeling Language User Guide, written by the
amigos, that says, “You can model 80 percent of most problems by using about 20 percent of
the UML.” However, nowhere in this book do the authors tell you which 20 percent that
might be. Our subset of the UML focuses on the core set of notations that you’ll need to do
most of your modeling work. Within this workbook we also explain how you can use other
elements of the UML and where to add them as needed.

One of our favorite quotes is, “The difference between theory and practice is that in theory,
there is no difference between theory and practice, but in practice, there is.” In practice, there
never seems to be enough time to do modeling, analysis, and design. There’s always pressure
from management to jump to code, to start coding prematurely because progress on software
projects tends to get measured by how much code exists. Our approach is a minimalist,
streamlined approach that focuscs on that area that lies in between use cases and code. Its
emphasis is on what needs to happen at that point in the life cycle where you’re starting out:
you have a start on some use cases, and now you need to do a good analysis and design.

\4

CHAPTER 1 ¥ INTRODUCTION

Our goal has been to identify a minimal yet sufficient subset of the UML (and of modeling in
general) that seems generally to be necessary in order to do a good job on your software
project. We’ve been refining our definition of “minimal yet sufficient” in this context for eight
or nine years now. The approach we’re telling you about in this workbook is one that has been
used on hundreds of projects and has been proven to work reliably across a wide range of
industries and project situations.

A Walk (Backwards) through the ICONIX Process

Figure 1-1 shows the key question that the ICONIX process aims to answer.

ON (2)

) 772 RR
% SR Code
Use Case - .
Model

How do we get from use cases to code?

Figure 1-1: Use Cases to Code

What we’re going to illustrate is how to get from point A to point B directly, in the shortest
possible time. (Actually, we’re not going to go all the way to code, but we’ll take you close
enough so you can taste it.) You can think of point A as representing this thought: “I have an
idea of what my system has to do, and I have a start on some use cases,” and point B as repre-
senting some completed, tested, debugged code that actually does what the use cases said it
needed to do. In other words, the code implements the required behavior, as defined by the
use cases. This book focuses on how we can get you from the fuzzy, nebulous area of “I think
I want it to do something like this” to making those descriptions unambiguous, complete, and
rigorous, so you can produce a good, solid architecture, a robust software design, then (by
extension) nice clean code that actually implements the behavior that your users want.

We’re going to work backwards from code and explain the steps to our goal. We’ll explain
why we think the set of steps we’re going to teach is the minimal set of steps you need, yet is
sufficient for most cases in closing the gap between use cases and code. Figure 1-2 shows the
three assumptions we’re going to make to start things off: that we’ve done some prototyping;
that we have made some idea of what our user interface might look like; and that we might
have some start in identifying the scenarios or use cases in our system.

A WALK (BACKWARDS) THROUGH THE ICONIX PROCESS v

Figure 1-2: Starting Off

This puts us at the point where we’re about to launch into analysis and design. What we want
to find out is how we can get from this starting point to code. When we begin, there’s only a
big question mark—we have some nebulous, fuzzy ideas of what our system has to do, and
we need to close this gap before we start coding.

In object-oriented systems, the structure of our code is defined by classes. So, before we write
code, we’d like to know what our software classes are going to be. To do this, we need one or
more class diagrams that show the classes in the system. On each of these classes, we need a
complete set of attributes, which are the data members contained in the classes, and opera-
tions, which define what the software functions are. In other words, we need to have all our
software functions identified, and we need to make sure we have the data those functions
require to do their job.

We’ll need to show how those classes encapsulate that data and those functions. We show
how our classes are organized and how they relate to each other on class diagrams. We’ll use
the UML class diagram as the vehicle to display this information. Ultimately, what we want to
get to is a set of very detailed design-level class diagrams. By design-level, we mean a level
of detail where the class diagram is very much a template for the actual code of the system—
it shows exactly how your code is going to be organized.

Figure 1-3 shows that class diagrams are the step before code, and there is a design-level dia-
gram that maps one-to-one from classes on your diagram to classes in your source code. But
there’s still a gap. Instead of going from use cases to code, now we need to get from use cases
to design-level class diagrams.

One of the hardest things to do in object-oriented software development is behavior alloca-
tion, which involves making decisions for every software function that you’re going to build.
For each function, you have to decide which class in your software design should be the class
that contains it. We need to allocate all the behavior of the system—every software function
needs to be allocated into the set of classes that we’re designing.

v CHAPTER | ¥ INTRODUCTION

— — [
= A I
S = 53
QUI Prototype U.:'c-;;i
Model

Diagram

Figure 1-3: Class Diagrams Map Out the Structure of the Code

One UML diagram that’s extremely useful in this area is the sequence diagram. This diagram
is an ideal vehicle to help you make these behavior allocation decisions. Sequence diagrams
are done on a per-scenario basis: for every scenario in our system, we’ll draw a sequence dia-
gram that shows us which object is responsible for which function in our code. The sequence
diagram shows how runtime object instances communicate by passing messages. Each mes-
sage invokes a software function on the object that receives the message. This is why it’s an
ideal diagram for visualizing behavior allocation.

Figure 1-4 shows that the gap between use cases and code is getting smaller as we continue to
work backwards. Now, we need to get from use cases to sequence diagrams.

We’ll make our decisions about allocating behavior to our classes as we draw the sequence
diagrams. That’s going to put the operations on the software classes. When you use a visual
modeling tool such as Rational Rose or GDPro, as you draw the message arrows on the
sequence diagrams, you’re actually physically assigning operations to the classes on the class
diagrams. The tool enforces the fact that behavior allocation happens from the sequence dia-
gram. As you’re drawing the sequence diagram, the classes on the class diagram get popu-
lated with operations.

So, the trick is to get from use cases to sequence diagrams. This is a non-trivial problem in
most cases because the use cases present a requirements-level view of the system, and the
sequence diagram is a very detailed design view. This is where our approach is diffcrent from
the other approaches on the market today. Most approaches talk about use cases and sequence
diagrams but don’t address how to get across the gap between the fuzzy use cases and a code-
like level of detail on the sequence diagrams. Getting across this gap between what and how is
the central aspect of the ICONIX process.

A WALK (BACKWARDS) THROUGH THE ICONIX PROCESS v

i

= —=
=1
=] &
e

T

GU! Prototype
Use Case !D
| J
Class
Dlegram

Figure 1-4: Sequence Diagrams Help Us Allocate Operations (Behavior) to Classes

What we’re going to do now is close the gap between the fuzzy, nebulous use case and the
very detailed and precise sequence diagram with another kind of diagram called a robustness
diagram. The robustness diagram sits in the gap between requirements and detailed design; it
will help make getting from the use cases to the sequence diagrams easier.

If you’ve been looking at UML literature, the robustness diagram was originally only par-
tially included in the UML. It originated in Ivar Jacobson’s work and got included in the
UML standard as an appendage. This has to do with the history and the sequence of how
Booch, Rumbaugh, and Jacobson got together and merged their methodologies, as opposed to
the relative importance of the diagram in modeling.

Across the top of a sequence diagram is a set of objects that are going to be participating in a
given scenario. One of the things we have to do before we can get to a sequence diagram is to
have a first guess as to which objects will be participating in that scenario. It also helps if we
have a guess as to what software functions we’ll be performing in the scenario. While we do
the sequence diagram, we’ll be thinking about mapping the set of functions that will accom-
plish the desired behavior onto that set of objects that participate in the scenario.

It helps a great deal to have a good idea about the objects that we’ll need and the functions
that those objects will need to perform. When you do it the second time, it’s a lot more accu-
rate than when you take a first guess at it. The process that we’re following, which is essen-
tially Ivar Jacobson’s process as described in his Objectory work, is a process that
incorporates a first guess, or preliminary design, the results of which appear on what we call a
robustness diagram. We refine that first guess into a detailed design on the sequence diagram.
So, we’ll do a sequence diagram for each scenario that we’re going to build.

v CHAPTER 1 ¥ INTRODUCTION

>0

e
= = =
= e L—.:J_‘> =
EERE = 5]
Gl Prototype u::os:. % m:
\\> Robustness
Diasgram

h

=

Class
Diagram

Figure 1-5: Robustness Diagrams Close the Gap Between Requirements and Detailed Design

Figure 1-5 shows that we’re adding a diagram to our subset of UML. The robustness diagram
was described in the original UML specs, but its definition was in an extra document called
Objectory Process-Specific Extensions. What we’ve found over the past ten years is that it’s
very difficult to get from use cases to sequence diagrams without this technique. Using the
robustness diagram helps avoid the common problem of project teams thrashing around with
use cases and not really getting anywhere towards their software design. If you incorporate
this step, it will make this process and your project much easier. We didn’t invent robustness
analysis, but we’re trying to make sure it doesn’t get forgotten. Robustness analysis has
proven to be an invaluable aid in getting across the gap between requirements and design.

Robustness analysis sits right in the gap between what the system has to do and how it’s actually
going to accomplish this task. While we’re crossing this gap, there are actually several different
activities that are going on concurrently. First, we’re going to be discovering objects that we for-
got when we took our first guess at what objects we had in the system. We can also add the
attributes onto our classes as we trace data flow on the robustness diagrams. Another important
thing we'll do is update and refine the text of the use case as we work through this diagram.

We still have a question mark, though. That question mark relates to the comment we just
made about discovering the objects that we forgot when we took our first guess. This implies
that we’re going to take a first guess at some point.

There’s a magic phrase that we use to help teach people how to write use cases successfully:
Describe system usage in the context of the object model. The first thing this means is that
we’re not talking, in this book, about writing fuzzy, abstract and vague, ambiguous use cases
that don’t have enough detail in them from which to produce a software design. We’re going
to teach you to write use cases that are very explicit, precise, and unambiguous. We have a
very specific goal in mind when discussing use cases: we want to drive the software design
from them. Many books on use cases take a different perspective, using use cases as more of

