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Preface

For a long time, the finite element method (FEM) has been a standard tool
for numerically solving a wide range of engineering problems. Today’s real-
world problems are becoming so highly complex that FEM alone is inad-
equate to solve them. Some of the limitations are listed below.

¢ It is not easy for FEM to generate a good quality mesh that should
be correct according to the geometry and the specific requirements
of a physical phenomenon. This problem will become more serious
when we solve large deformation problems such as crack propagation,
astrophysics phenomena, and extrusion.

e It is difficult for FEM to treat discontinuities properly as this process
depends on mesh quality. Therefore, computational results may be
incorrect due to high discontinuity if mesh is distorted.

¢ Adaptive meshing in FEM may cause degradation of accuracy in com-
plex programs. It is impractical to solve systems of equations based on
billions of elements.

¢ FEM is required to handle a lot of geometry degeneracy cases to
generate correct and good quality mesh for complex geometry. This
makes programs highly complex and slow while running.

¢ Mesh generation and mesh refinement in FEM are computationally
expensive.

Due to these limitations of FEM, it is necessary to develop other numerical
techniques that should be able to solve complex problems without generating
mesh. A technique should also correctly handle governing equations by con-
serving essential parameters. As a result, the meshless or meshfree method
is proposed as one such numerical technique to overcome these limitations.

Meshless methods have been developed in the past decade, and sig-
nificant progress has been achieved recently for numerical computations
of wide ranging engineering problems. These meshless methods do not
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require mesh for discretisation of problem domains, and they construct the
approximate functions only via a set of nodes where no element is required
for approximation of functions. They overcome the limitations of FEM.
Several examples of the advantages of the meshless methods include

Computational cost is reduced significantly since no mesh is required.

Higher computational accuracy is achieved easily by simply adding
nodes, especially for cases where more refinement is required.

High-order shape functions are constructed easily.

Compared with FEM, the meshless methods can easily handle large
deformation and strongly nonlinear problems, since the connectivity
among the nodes is generated as a portion of computation and it can
change with time.

To date, about 15 books have been published on meshless methods.
However, the authors focused primarily on methods that they developed.
It is thus really necessary to publish a handbook type volume that provides
the complete mathematical formulations for each of the most important
and classic meshless methods that are well known and widely accepted and
cover recent developments. It is also necessary to demonstrate a rigorous
mathematical treatment of the numerical properties of meshless methods
that will give sufficient confidence to users about the capabilities of par-
ticular meshless methods. This is especially important for readers who are
interested in the individual meshless methods and seek full background
information about all the most important and classic methods. This infor-
mation will also be useful to an individual researcher who wants to embark
on a journey of meshless method development.

A comprehensive introduction of the most important and classic mesh-
less methods through complete mathematical formulations is thus war-
ranted to provide overall insight into the meshless methods, theoretical
understanding of the difference between FEM and meshless methods,
and explanations of the detailed numerical computational characteris-
tics of the methods. However, as noted, there is a lack of comprehensive
publications on the formulations of the most important and classic meth-
ods. This monograph is thus written to systematically document the most
important and classic meshless methods and the analyses of numerical
properties.

In this book, the introduction for each of the most important and classic
meshless methods is provided along with the complete mathematical for-
mulations. In total, it presents 19 meshless methods, including the authors’
recent contribution, in detail with full mathematical formulations and
performance studies for the methods developed by the authors showing
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numerical properties such as convergence, consistency, stability, and adap-
tive analyses systematically.

Several engineering applications of the meshless methods are also
included, for example, the CAD designing of MEMS devices, the nonlinear
fluid structure analysis of near-bed submarine pipelines, and two-dimen-
sional multiphysics simulations of pH-sensitive hydrogels.

This is the first monograph of its kind in which a comprehensive and sys-
tematic introduction of the most important and classic meshless methods
is provided by complete mathematical formulations with full development
information, although this is not the first book about meshless methods. It
also covers the recent development of the meshless methods, mainly con-
tributed by the authors. The methods are fully formulated mathematically
and their numerical properties, such as convergence, consistency, stabil-
ity, and adaptivity are studied in detail. Further, the benchmark results
for engineering applications of the methods are also documented. Finally,
this monograph is written in as simple a manner as possible so that it is
informative and easy reading for researchers and can also serve as a rich
reference source, for example, as a handbook for a graduate student who
intends to work in the area of numerical computational techniques.

This monograph is intended to meet the needs of scientists and engi-
neers in the broad areas of computational science and engineering. It will
be especially useful for them as a reference book, and also if they wish to
conduct further studies to extend their work to modeling and simulation
of practical engineering problems. Another important primary audience
is postgraduate students in the areas of computational theory, numerical
methods, and discrete mathematics, especially those involved in develop-
ing new high-performance numerical methods. Possible secondary audi-
ences include undergraduate students taking advanced numerical analysis
courses covering discrete numerical analysis and methods. The chapters on
the formulation of the selected classic meshless methods will be especially
useful to these students. Correspondingly, course lecturers will also find
this book a good reference source.

This book provides both casual and interested readers with insight into
the special features and intricacies of meshless methods. It will also be
invaluable to design engineers using CAD software for modeling and simu-
lation of a wide range of engineering problems, serving as a useful reference
containing benchmark formulations to compare and verify other numerical
methods.

The authors would like to thank Professor Tom Hou of Caltech for his
guidance in the stability analysis of the RDQ method, and Professors Khin-
Yong Lam, Gui-Rong Liu, and J. N. Reddy for their constant support and
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encouragement. The authors would also like to thank J.Q. Cheng and Q.X.
Wang for their invaluable contributions to this research.

Hua Li and Shantanu S. Mulay

School of Mechanical & Aerospace Engineering
Nanyang Technological University

Singapore
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