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Preface

This volume contains papers from the X1V Symposium of the Interna-
tional Centre for Heat and Mass Transfer, held September 1982 in Dubrovnik,
Y ugoslavia.

The symposium was organized to focus attention on heat and mass
transfer processes especially associated with rotating machinery components.
The understanding of such processes plays an increasingly significant role in
the continued development of many different types of rotating machinery.

The objective of the Dubrovnik meeting was to bring together researchers
and practitioners in a forum for exchange of information both on research
topics and on design problems and strategies. Contributed papers were
organized into sessions on generic research areas and on specific types of
machines. The same general format has been followed in arranging this
volume, although in some cases papers span more than a single category and
placement is therefore somewhat arbitrary.

The editors would like to acknowledge the contribution of the follow-
ing organizing committee members and session chairmen: G. Bois, Ecole
Centrale de Lyon, France: M. E. Elovic, General Electric Company, USA;
B. Gal’Or, The Technion, Israel; M. Hirata, University of Tokyo, Japan;
M. Majcen, University of Zagreb, Yugoslavia; P. J. Marto, U.S. Naval
Postgraduate School, USA; R. E. Mayle, Rensselaer Polytechnic Institute,
USA; W. D. Morris, University of Hull, UK; J. M. Owen, University of Sussex,
UK; D. B. Spalding, Imperial College of Science and Technology, UK; S. L.
K. Wittig, University of Karlsruhe, FRG; C. H. Wu, Engineering Thermo-
physics Research Institute, People’s Republic of China.

Darryl E. Metzger
Chairman, Symposium Committee

Naim H. Afgan
Scientific Secretary, ICHMT
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Secondary Flows and Enhanced Heat
Transfer in Rotating Pipes and Ducts

Y. MORI

Department of Physical Engineering
Tokyo Institute of Technology
Meguro-ku, O-okayama, Tokyo, Japan

W. NAKAYAMA

Mechanical Engineering Research Laboratory
Hitachi, Ltd.

Kandatsu, Tsuchiura, Ibaraki, Japan

ABSTRACT

The objective of this paper is to give a general review of secondary flows
and enhanced heat transfer in rotating pipes and ducts. The secondary flows
are caused by body forces such as Coriolis force, that are caused by density
variation in a centrifugal field or the resultant of that by density in a
centrifugal field and centrifugal force due to curvature of a duct. Heat
transfer in rotating ducts is enhanced by the secondary flow and its perfor-
mance varies with the shape of the duct cross-section and the intensity and
orientation of the body force.

Based on these understandings, theoretical and experimental works on
featuring secondary flows and heat transfer performances in rotating and re-
volving pipes and ducts are summarized. As theoretical ones, the two analyti-
cal methods and numerical works are explained and their results are compared
with experiments. Data for helium and two phase flows are shown as getting
attractive, but more work in these fields is required in the future.

NOMENCLATURE

radius of pipe or characteristic length of pipe (m)
: isobaric specific heat (J/kgK)
: body force (Pa/m)
: nondimensional body force, or friction factor
temperature distribution in the cross-section
: nondimensional temperature = G/Ta
dynamical parameter
thermal conductivity (W/(m-K))
: Nusselt number
: pressure (Pa)
: nondimensional pressure = (a?/v?) (P/p)
: Prandtl number
: radius of curvature (m)
Rayleigh number
Reynolds number
: radial coordinate (m)
temperature (K)
: wall temperature (K)
: velocity vector (m/s)
components of V in X, Y and Z directions (m/s)
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4 ROTATING TUBES AND CHANNELS

u,v,w : nondimensional velocity = (U,V,W)x(a/v)

X : axial coordinate (m)

Y ¢ coordinate in the body force direction (m)
Z : coordinate in the cross-section (m)

X,y,2 : nondimensional coordinate = (X,Y,Z)x(1/a)
B : expansion coefficient (1/K)

§ : boundary layer thickness (m)

n : nondimensional radial coordinate = r/a

u : viscosity (Pas)

v : kinematic viscosity = p/p (m?/s)

P : density (kg/m?)

T ! temperature gradient in the axial direction (K/m)
U] ¢ angular coordinate in the cross-section (rad.)
1] ¢ angular velocity (1/s)

w : nondimensional angular velocity = 2a2Q/v
K ¢ thermal diffusivity (m?/s)
Superscript

: mean value in Z direction

! : perturbed component by secondary flow
Suffix

§ : outer edge of boundary layer

1 : main flow

Other Symbols

¥ p : mean value in Y«Z section

1. INTRODUCTION

Heat transfer in rotating ducts and pipes has become a subject of great
importance for engineers in various industries. Research works on coolant flow
and heat transfers in turbine blades have been intensified with the aim of
raising the operating temperature of gas turbines. As the electric generator
in power stations has increased in capacity, cooling of the rotating field wind-
ings has called for important design consideration. Recently, the research and
development of a superconducting generator is being carried out in several
countries, for which the flow of liquid helium in the cryogenic rotor is an
important research subject. Basides those advanced technologies, conventional
rotating machines also pose cooling problems as they are housed in noiseproof
or dustproof containers.

Those diverse industrial needs have motivated the present authors to con-
duct theoretical and experimental studies in the past years. This paper pre-
sents a summary of our works, together with an updated review of the works made
by other investigators.

In the coolant passages of rotating systems, the fluid is subject to a
centrifugal force or a Coriolis force. Those forces, where they act in the
direction of fluid passage, either accelerate or retard the flow. Where the
forces act in the transverse direction to the flow, they cause secondary flows,
which increase the heat transfer coefficient on the passage wall and the resist-
ance to a coolant flow. The secomdary flows are the most distinguishing pheno-
mena in heat transfers in rotating pipes and ducts, and are our primary concern
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Fig. 1 Principal orientation of rotating and revolving duct flows

radial rotating parallel revolving circumferential
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Table 1 Body forces and dynamical parameters for single-phase flow

in the present paper, because they pose challenging problems to researchers and
the accurate estimate of their effects on heat transfer performances is impor-
tant for cooling system designs.

Fig. 1 shows three principal orientations of flow passage against the axis
of rotation taking a circular pipe as a representative passage. We call those
passages (a) a radial rotating duct, (b) a parallel revolving duct, and (c) a
circumferential revolving duct. A coolant passage in real rotating machines is
equivalent to any of those ducts, or it is formed by joining them in a series of
bends. The body forces of primary importance which cause secondary flows are
listed in Table 1. For single phase flows, the dynamical parameters listed in
Table 1 signify the intensity of secondary flows. They and conventional para-
meters of Reynolds number, Prandtl number and Graetz number make up a set of
parameters needed to define flow and temperature fields.

As for the cross-sectional geometry of the coolant passage, the configura-
tions of practical importance are those illustrated in Fig. 2, (a) circular, (b)
square, and (c) narrow rectangular. In general, the body force F acts in any
direction depending on the posture of a cross-section with respect to the axis
of rotation. However, the practically important directions of forces are those
of Fig. 2.
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(a) circular (b) square (c) narrow rectangular
Fig. 2 Cross-section of flow passage and action of body force
In the following section 2, the fundamental cases of fully developed flows
will be discussed. That is followed by a summary of recent numerical studies.
In the section 3, the experimental works will be reviewed. The section 4 is
devoted to a review of recent works on two-phase cooling schemes.

2. SINGLE-PHASE FLOW AND HEAT TRANSFER — THEORY

Equation of momentum and energy for the flow under the influence of a body
force ¥ are shown by equations (1) and (2);

p(V+-WV = -VP + Wl + 7 (1)

]

pep (V- V)T KT (2)
respectively, where V is the velocity vector, T the temperature, P the pressure,
and other notations are listed in NOMENCLATURE. The assumption of constant
physical properties is adopted for the sake of simplicity to explain the fea-
tures of secondary flow in rotating ducts.

Equation (1) is resolved into the equation for a primary flow (velocity
component u) and those for secondary flow (v, w). In the cases of a radial
rotating duct and a circumferential revolving duct, the momentum equation is
solved taking the body force into account except the effects of physical proper-
ty variation due to temperature distributions. On the other hand for a parallel
revolving duct, the energy and momentum equations are coupled through the body
force term. In order to solve a set of those coupled equations, one must resort
to either one of the following analytical methods.

(1) Perturbation method.

(2) Boundary layer method.

(3) Energy balance and Entropy balance methods.

(4) Direct numerical integration by either finite difference methods or

finite element methods.

The perturbation method suits the analysis of flows in circular pipes ac-
companied by weak secondary flows. Fig. 3(a) shows the secondary flow pattern,
the axial velocity and temperature distributions displaced only slightly from
the axially symmetric distributions. When the secondary flow is caused with a
considerable intensity, the velocity and temperature distributions are distorted
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remarkably from symmetric ones, as
shown in Fig. 3(b). In such cases,
the boundary layer modeling proves
to be a powerful analytical tool,
and this has been used extensively
by the present authors for laminar
as well as turbulent flows [1, 2, 3,
4]. TFor the cross-sectional geomet-
ries of square and rectangle, the
perturbation method is difficult to
apply because the expansion in terms
of the perturbation parameters be-
comes complex. The boundary layer
method requires a rather complex
modeling. The method of more integ-
ral nature based on the balance of
energy and entropy was proposed to
handle the problems of square and
rectangular ducts [5]. The above
analytical methods have merits in
yielding concise and general corre-
lations among friction factors, heat
transfer coefficients and the dyna-
mical parameters. The recent ad-
vances in numerical analysis des-
cribed later on have given a well
founded proof to the boundary layer
modeling, and also provide one with
detailed features of flow and tem-— AN/
perature fields. Numerical analyses

body force

distribution of axial velocity

!

\ [/
\ /
\ H )
\ [/

\

\ /,

have successfully
sults obtained by
methods for small

correlated the re-
perturbation
dynamical para-

distribution of fluid temperature

(a) (b)

meter and boundary layer method for

T —— case of weak case of strong

secondary flow secondary flow
In what follows, the dynamical

parameter will be denoted by € or K
for the sake of conciseness. It
should be noted, however, although
equations can be formulated in such
general terms, quantative results
differ for different cases. This is
also pointed out experimentally by Trefethen, as quoted in [6].

Recently, progresses for numerical analysis have been extending the applicable
region of numerical results to large dynamical parameter for which so far the
boundary layer method has been only the way of analysis of secondary flows.
However, it should be noted that the boundary layer method can produce general
relations for secondary flows when numerical analysis is not easily applicable.

Fig. 3 Secondary flow pattern and
distributions of axial
velocity and temperature

2.1. Fully-Developed Flows with Weak Secondary Flows

(1) Perturbation method.
dimensionalization
components and the
1, denoted here by
the characteristic

For laminar and fully developed flows, the non-
of equations (1) and (2) leads to expansion of the velocity
temperature in terms of a dynamical parameter listed in Table
€ to signify the smallness of the parameter. In terms of
length a, the kinematic viscosity Vv, the non-dimensional




