BASIC numerical mathematics

J C Mason MA, D Phil, FIMA

All rights reserved. No part of this publication may be reproduced or
transmitted in any form of by any means, ingluding photocopying and
recording without the written permission of the copyright holder,
application for which should be addressed to the Publishers. Such
written permission must also be obtained before any part of this
publication is stored in a retrieval system of any nature. '

This book is sold subject to the Standard Conditions of Sale of Net
Books and may not be resold in the UK below the net price given by
the Pubtishers in their current price list.

First published 1983

© Butterworth & Co (Publishers) Ltd, 1983

British Library Cataloguing in Publication Data

Mason, J. C.
BASIC numerical mathematics.
1. Basic (Computer program language) 2. Engineering
mathematics—Computer programs
1. Title
510°.28'542 TA330

ISBN 0-408-01137-8

Typeset by Phoenix Photosetting, Chatham, Kent
Printed and bound in Great Britain by Whitstable Litho Ltd., Whitstable, Kent.

Preface

This book has two broad aims, as its title suggests: to introduce the
reader to numerical mathematics, and to do so in the context of
BASIC language programming. It is thus hoped to meet the needs
of a wide range of engineers, mathematicians, and scientists who
wish to solve practical problems on a computer.

More specifically, the book is one of a series geared to the
requirements of undergraduate engineers, both in its choice of
topics and in its style of presentation. In this context it has two
principal tasks: to present BASIC numerical mathematics for its
intrinsic value to engineers, and to provide a foundation for
applications of numerical mathematics in other books of the
BASIC series.

In particular the book aims to cover to a reasonable depth a
selection of the most fundamental topics, namely nonlinear
equations, finite differences, interpolation, differentiation and
integration, as well as a variety of elementary mathematical
calculations. Books on further numerical topics will appear later in
the BASIC series, including a text on BASIC Matrix Methods,
covering direct and indirect methods for simultaneous linear
equations and applications to data fitting and function approxi-
mation.

Although it is primarily intended as an introductory text for first
and second year undergraduates, the book would also serve as a
reference book for advanced undergraduates, and its more
elementary sections could be understood by good mathematics
and science students in schools.

The book contains not only a large number of well-documented
BASIC programs for executing a number of fundamental
mathematical methods required by engineers, but also a fairly
detailed discussion of the mathematical principles behind these
methods. As a textbook it is tailor-made for a course in which
numerical mathematics -and computing are ‘integrated’, but it
could also provide a means of spicing up a2 numerical mathematics
course by adding optional computer exercises or of strengthening

an engineering problems course by offering not only ‘package
programs’ but also the mathematical foundations underlying them.

In writing the computer programs for this book certain decisions
had to be made. In particular, BASIC was chosen as the program-
ming language for the book, indeed for the whole series of books,
because it is a simple and convenient language which is justifiably
popular amongst engineers and widely available on minicom-
puters. The design of the BASIC language makes it possible to
write programs, test them, modify them, and run them with very
great ease. Readers should therefore be able to use and modify the
programs in the book for their own use without difficulty.

However, one notable drawback of BASIC lies in its poor sub-
routine and subprogram facilities; indeed it is not normally poss-
ible to call upon one program within another program. This and
other drawbacks are pointed out in the book as they arise.
Although subprogram facilities can generally be dispensed with at
the elementary level of this book, readers would find such facilities
helpful if they wished to develop programs or use them within
their own programs. In time such facilities may well become avail-
able in BASIC on larger computer systems.

In order to promote better understanding, individual instruc-
tions in our BASIC programs have wherever possible been written
to resemble corresponding mathematical equations, occasionally
at the expense of a little efficiency. The resemblance becomes
clearer if the reader erases all REM statements, which are
included only for explanatory purposes.

If readers wish to look up programs in the book, they will find
them within the body of the text rather than before or after the
relevant theory. However, complete lists of programs with titles
and page references may be found in the Cdg:ents List. Programs
are generally preceded by Algorithms (with the same numbering)
which detail the logical steps to be carried out, and followed by
Sample Runs which demonstrate the programs in action, and by
Program Notes which provide necessary additional information
and advice. ,

So as.to make the programs easy to use and attractive for
demonstration and teaching purposes we have designed them to be
‘interactive’ Following the keyboard instruction RUN, the user is
asked for all relevant data, and then all input and output takes
place at the keyboard. However, this also means that, if typed out-
put is to be taken away by the user, the keyboard must be equipped
with a ‘hard-copy’ facility. Readers who prefer to use ‘batch-mode’
programs, which include all their own data, may easily modify the
programs by using appropriate READ and DATA statements in

place of INPUT statements (see Programs 1A and 1B where such
modifications are made).

As far as the mathematics in the book is concerned, we have
tried to strike an appropriate balance between numerical methods
and numerical analysis. It is clearly essential for engineers to have
an armoury of methods at their disposal. However, they also need
to know enough numerical analysis to be able to assess the relative
merits of alternative methods and to understand the errors that all
methods necessarily produce. :

We have also tried to whet the reader’s appetite in all the prob-
lem areas covered, even though in some cases the shortness of the
book and the assumed inexperience of the reader has prevented us
from making use of the ‘best’” methods available. On balance we
believe that readers are better off with an imperfect method,
provided that they are made aware of its limitations, than with no
method at all.

A large number of problems are posed at the ends of chapters,
covering both mathematical and computational aspects. Many of
the questions are designed to help readers understand and use the
theory and programs in the book. However, several questions are
also given which aim to increase the reader’s mathematical know-
ledge and put new perspectives on the theory, and several oppor-
tunities are given for readers to extend and develop programs to
solve new problems.

it remains for us make some specific remarks about the con-
tents. The book starts with three introductory chapters. Chapter 1
provides a brief but reasonably thorough description of BASIC,
sufficient to understand and code the programs in the book. Chap-
ter 2 gives an overall view of numerical mathematics, and discusses
with simple examples all the factors which need to be taken into
account in applying a numerical method to solve a mathematical
problem. "While Chapter 3 develops BASIC programs to perform a
set of elementary mathematical calculations, several of which will
be familiar to the reader from school mathematics (e.g. the solu-
tion of quadratic equations) and a number of which are used to
advantage within programs in subsequent chapters.

Chapter 4 then proceeds to a thorough discussion of nonlinear
algebraic equations including the bisection method, fixed point
iteration and Newton's method, but with no treatment of complex
roots. Finally Chapter 5 is concerned with the processing of tables
of data in order to derive information from them, including the
interpolation of values between tabulated values, the evaluation of
derivatives (i.e. gradients), and the calculation of integrals (i.e.
areas under the oranh). This chanter includes a comorehensive

introduction to finite differences, which are the principal tool in
the analysis.

Although the book is primarily intended for undergraduate use,
we suggest that introductory numerical mathematics/computing
courses in schools might be based on Chapters 1 to 3, together
with judiciously chosen sections of Chapters 4 and 5 (centering
perhaps around the bisection and Newton methods, the Lagrange
and Newton interpolation formulae, and the trapezium and Simp-
son integration rules).

We are grateful to colleagues at the Royal Military College of
Science at Shrivenham for helping with this book in a variety of
ways.

In part'icular we are indebted to Mrs Jan Price for preparing the
manuscript with astonishing speed and precision, and to Mr D. C.
Stocks, Dr M. J. Iremonger, and Mr P. D. Smith, for reading,
checking or criticizing various parts of it.

Contents

1

2-

3

Preface
Introduction to BASIC

Computer programs and programming languages
The BASIC approach

The elements of BASIC .

Matrix routines

Checking and editing programs

Different computers and variants of BASIC
Summary of program contents

References

—
—

b pd ek b ik ek
OB WN

Introduction to numerical mathematics

ESSENTIAL THEORY

2.1 Traditional mathematics and numerical
mathematics

Numerical methods and numerical analysis
Decimal and binary numbers

Fixed-point and floating-point arithmetic
Absolute and relative errors

Errors in numerical calculations

Summary of key ideas and concepts
Further reading

References

ARG N M
R R RV A S

. PROBLEMS

Elementary mathematical calculations
ESSENTIAL THEORY

3.1 A product of numbers
3.2 A sum of numbers
3.3 The sum of a series

3.4 Processing lists of numbers

3.5 Evaluation of a polynomial and its derivative
(Horner’s rule)

3.6 Limits of ratios

3.7 Two simultaneous linear equations—integer
coefficients

3.8 Quadratic equations

3.9 Three-term recurrence relations

3.10 Elementary matrix calculations

3.11 References

PROBLEMS
PROGRAMS

3.1A TEST1A:
3.1B TESTI1B:

32 TEST2:
3.3 TEST3:
3.4 TEST4:
3.5 TESTS:
3.6 TEST6:
3.7 TESTT:
3.8 TESTS:
3.9 TEST9:
3.10 TESTI10:

Product of terms (interactive program)
Produce of terms (batch program)
Sum of terms

Sum of series

Reordering a list

Polynomial and its derivative
Limit of ratio of functions
Simultaneous equations
Quadratic equations

Recurrence relation

Matrix product

Nonlinear algebraic equations
ESSENTIAL THEORY

4.1 Introduction

4.2 Existence of solutions
4.3 The bisection method
4.4 Fixed-point iteration
4.5 Newton’s method

4.6 The secant method
4.7 Polynomial equations
4.8 Other methods

4.9 References

PROBLEMS
PROGRAMS

4.1 BISECT:

4.2 FIXITE:

Bisection method
Fixed point iteration

4.3 SECANT: Seccant method

42

43
45

46
49
51
54

56

38

39
41
43
44
46

50
53
55

60
60

60
6l
62
66
75

81
90
50

90

65
69
79

4.4 BERPOL: Bernoulli’s method for a polynomial
4.5 NEWPOL: Newton’s method for a polynomial

5 Interpolation, differentiation and integration
ESSENTIAL THEORY

Introduction

Continuous approximation methods
Interpolation with unequally spaced ordinates
Finite differences and their applications
Interpolation with equally spaced ordinates
Differentiation

Integration

Indefinite integration

References

PROBLEMS

PROGRAMS

5.1 LAGINT: Lagrange interpolation formula

5.2 NEVINT: Neville’s interpolation algorithm

5.3 TABDIF: Tables of finite differences

5.4 NEWFOR: Newton’s forward difference inter-
polation formula

5.5 DIFFOR: Differentiation using forward

w
—

L bhhninn g
LI Lhhiniv

ditferences
5.6 DIFCEN: Ditferentiation using mean central
, differences
5.7 TRAP: Trapezium rule
5.8 SIMPSN: Simpson’s rule
59 ROMBG: Romberg integration
5.10 SIMSIM: Repeated indefinite integration

Index

85
89

94
94

94
95
86
101
114
117
122
131
133

134

98
100
110

115
119
121
124
127
129
132

139

Chapter 1

Introduction to BASIC

“In a few minutes a computer can make a mistake so great that it
would take many men many months to equal it”, according to
Merle L. Meacham. Nevertheless, when such mistakes can be
avoided, the computer can be an invaluable tool in the solution of
mathematical problems. In this book we must therefore strive not
only to understand numerical mathematics but also to write cor-
rect BASIC computer programs.

1.1 Computer programs and programming languages

A computer program is a set of instructions which a computer is
able to interpret and execute. These instructions are designed to
perform a particular task, in our case the numerical solution of a
mathematical problem. In order that the instructions may be re-
cognised, they must be written in a standard programming lan-
guage (such as BASIC, FORTRAN, ALGOL, PASCAL,
COBOL, etc) for which an ‘interpreter’ (ot ‘compiler’) is available
on the computer. The mterpreter transforms each instruction in
the programming language into a set of funddmental instructions
in a ‘machine language’ instantly recognisable to the computer.
The programming language is designed to be convenient and prac-
ticable for the user, and BASIC is one such programming
language.

1.2 The BASIC approach

* All of the programs in this book are written in BASIC. The name
BASIC is an acronym for Beginner’s All-purpose Symbolic
Instruction Code, and was developed at Dartmouth College USA
as a general-purpose language. The main advantages of BASIC
are that it is easy to learn, convenient to use, and partncularly well
suited to ‘conversational’ programming in which the user interacts
with the computer throughout the running of the program.

The simple version of BASIC used in this book has a number of
disadvantages, and these mainly concern its lack of structure in

1

2 Introduction to BASIC

comparison with Janguages like FORTRAN or PASCAL. For
example it is not usual in BASIC tp distinguish between integers
and other numbers, to have variabRs of double length (for more
accurate calculations), or to use one program as a subroutine or
subprogram for another program. Moreover BASIC has a particu-
lar disadvantage in numerical analysis, which relates to its appar-
ently commendable feature of rounding to integer values any
numbers that are very close to integers. This makes it difficult to
test the conditioning of any problem that has integer data, and
inadvisable to use integer data as test data in gauging the rounding
error in any program. However, these disadvantages are not too
important a consideration for elementary programs such as those
given in the following chapters.

This book is not intended as an instruction manual in BASIC.
For that purpose the reader is referred to References 1-3 at the
end of the Chapter or to one of many similar works. One of our
aims, however, is to help the student learn BASIC by applying it to
solve mathematical problems, especially those that occur in sci-
ence and engineering. This dim can be met by the reader if he
studies and tests the programs in the book, and also tries to write
his own programs based on some of the problems given at the ends
of the chapters. Although the book does not give every detail of
the grammar of BASIC, a description of the main features of
BASIC is given below.

1.3 The elements of BASiC

1.3.1 Program structure and sequencing

A BASIC program is a sequence of statements which define a
procedure for the computer to follow (rather like a cooking recipe
for a chef to follow). As it follows this procedure, the computer
allocates values to each of the variables encountered and changes
them where instructed. Statemenys used in the program are of a
number of types, which will be discussed in ‘more detail in follow-
ing sections. They include REM statements {for making program
notes), DIM statements (for allocating subscripted variables),
INPUT or, READ statements (for defining data), assignment
statements (for domg mathematics), conditional statements (for
controlling the action of the program) and PRINT statements (for
printing out results).

Every statement must be preceded by a line number. On run-
ning the program, all statements are executed in the sequence that
corresponds to these line numbers. For example, the program

The elements of BASIC 3

100X =1 is executed as 100X =1

400 GO TO 200 200X =X+1
300 PRINT X 300 PRINT X
200X=X+1 400 GO TO 200

The use of numbering greatly simplifies correcting and editing (see
Section 1.5).

1.3.2 Mathematical expressions

In mathematics it is necessary to evaliate expressions which
involve numerical constants, variables (e.g. x), and functions (e.g.
sin). All constants are treated identically in BASIC, whether they
are integer (e.g. 36) or real (e.g. 36.1). They may be entered in
either fixed point form (e.g. 36.1) or floating point form (e.g.
0.361E2), although the computer prints out numbers in fixed
point form unless they are small or large. The constant = is often
available by typing PI or the = key, but for clarity the numerical
value (3.14159265 .". .) will be used in thlS book unless otherwise
stated.

Variables which fulfll the role of letters in algebra, may be
named by any one of the letters A to'Z, or by any letter followed
by a digit (e.g. A3, P7, etc). Each variable is allocated a location in
the computer memory, and it takes the numerical value recorded
in that location. This numerical value is substituted for the corres-
ponding variable whenever that variable occurs in an expression,
and so it is important to ensure that the correct value is given to a
variable initially.

The function square root may be evaluated via the built-in com-
puter function SQR, vx being replaced by SQR(X). The argument
in brackets (X) may be any number, variable,- or mathematical
expression. Other built-in functions include SIN(X), COS(X),
LOG(X), EXP(X), ABS(X), and INT(X) which represent, re-
spectively, sinx, cosx, Inx (i.e. log,x), e*,| x|, and the integer part
of x. For trigonometric functions (SIN, etc) the argument is
assumed to be measured in radians.

Mathematical expressions are formed from constants, variables
and functions by inserting arithmetic operations such as plus,
times, etc. These operations have a hierarchy, which determines
the order in which they are performed by the computer, and it is as
follaws:

to the power of (")
multiply (*) and divide (/)
add (+) and subtract (—).

4 Intreduction to BASIC

Ii two or more operations have the same hierarchy, then the com-
puter works from left to nght. Brackets always take precedence
and should be used to provide clarity and avoid ambiguity. The
tirst left bracket is patred with the last right bracket, and so on.
Hence

a+b

3¢

becomes either
(A+B)/(3*C) or (A+B)/3/C.

Some examples of correct and incorrect BASIC expressions are as
tollows:

Mathematical -

expression Correct BASIC fncorrect BASIC

X sinx X * SIN(X) X SIN(X)

11”_’: (1-R"N)/(I-R) 1-R"N/1-R

In(1 + \x) LOG (1 + SQR(X)) LOG (1 + SQR(X)
ﬁfﬂ ABS((1 + SIN(X))/X) ABS (1 + SIN(X))/ X

1.3.3 Assignment statements
An assignment statement takes the form
line number [LET] variable = mathematical expression

The word LET here is usually optional, and will be omitted
throughout this book. Square brackets are used in this chapter to
indicate optional items. For example a root of a quadratic equation
X, = (=b + \b° = dac)/(2a)

may be obtained by a statement such as

100 X1 = (-B + SQR(B"2 - 4"A())/(2*A)
[t is important, however, to realise that an assignment statement is
not itself an-equation. [t is an instruction to give the variable on the
left hand side the numerical value of the expression on the right
hand side. Thus we may have a statement such as

SOX=X+1
which increases by 1 the value of X.

There is no mathematical statement in common usage which s

The clementg of BASIC S

precisely equivalent to the assignment statement

X=Y
However, in this book we shall use the symbol “:=" to denote
‘becomes’, so that the precisely equivalent mathematical state-
ment is

X:=y
The symbol :=" is used in place of ‘=" for assignment statements
in the ALGOL language.

1.3.4 Input

In conversational programming the user specifies values of vari-
ables by INPUT statements at ‘run-time’. The statement has form

Line number INPUT variable 1 [, variable 2, ..]

e.g.
.20 INPUT A, B, C

When the program is run the computer prints ? on reaching this

statement, and waits for the user to type values for the variables,

e.g. 75,10, 15 which-is interpreted as A=5,B=10,C= 15in

the above example.

An alternative form of data input is used if there are many data,
or if the data are unlikely ever to be changed, or if the user does
not want to converse with the computer. In this case a statement of
the form

line number READ variable 1 [, variable 2, ..]
eg. -
20 READ'A, B, C (1.1)

is used in conjunction with a statement (or number of statements)
of form

lme number DATA number 1 [, number 2,]

e.g. either v
21 DATA 5, 10, 15 (1.2)
or)
21 DATAS | |
22 DATA 10 (13)

23 DATA 15

6 Introduction to BASIC

On cxecuting a READ statement, values are assigned to variables
from the DATA statements in the order in which the latter occur
in the program. If (1.1) is followed by either (1.2) or (1.3), then A,
B and C are allocated values 5, 10, and 15.

1.3.5 Output

The output ot data (for checking purposes) and-the results of
calculations ete is done by a statement of form

line number PRINT list
where the list may contam vanablcs or expressions e.g.
200 PRINT A, B, C, A*B/C.
or text enclosed in quotes €.g. |
10 PRINT “VALUES OF A B C s
or a mixture of both e.g.
300 PRINT “X = 7; XY ="

The items in the lists are separated by commas or semi-colons.
Oommas"_eﬁ"sure a tabulation in columns about 14 spaces wide,
while a semi-colon suppresses such spacing. If a semi-colon is
placed.at the end of a list, it suppre-ses the line feed. I the list is
left blank then a blank line is prmted and this is a useful way of
spacing out results.

Note the necessity to use PRINT statemcnts to copy out all
numbers which are input by INPUT or READ/DATA statements,
so that there is a true record of them. PRINT statements should
also precede INPUT statements for explanatory purposes, since 7
on its own is not informative. For example the pair of statements

10 PRINT “WHAT IS X”;
20 INPUT X '

leads to the computcf output
WHAT IS X?
in reply to which the value of X is typed in.

1.3.6 Conditional statements

1t is often necessary to take a course of action if, and only if, some
condition is fulfilled. This is done with a statement of form

The elements of BASIC 7

ditional . . "
line number II- expression lcon fhona expression 2 THEN line number
operator

where the possible ‘conditional operators’ are

= equals
<> not equal to
< less than

<= less than or equal to
> greater than
>= greater than or equal to

For example a program could contain the following statements
if it is to stop when a zero value of N is input.

20 INPUT N :

30 IF N <> 0 THEN 50 . (1.4)
40 STOP ‘) ’
50...

Note the statement STOP which ends the run of a program. This
is not to be confused with the statement END which is the
(optional) last statement occurring in the program listing.

1.3.7 Loops

There are several ways in which a program may be made to repeat
some of its procedure, and the simplest is to use the statement

line number GO TO line number
For example, if the statement
60 GO TO 20

is added to the instructions (1.4), then the program will execute
statement 50 for a sequence of input values of N until a zero is
input.

- The most common way of doing loops is to start with a ‘FOR
statement’

line number FOR variable = expression 1 TO expression 2
{STEP expression 3]

wherc the STEP is assumed to be umty if it is omitted, and end the
loop with

line number NEXT variable

8 Introduction to BASIC

The same variable is used in both FOR and NEXT statements, and
its value should not be changed in the intervening statements.

A loop is used if, for example, N sets of data X, Y have to be
read and a mathematical expression such as sin(X + Y) calculated
in each case. e.g. . :

10 READ N

20 PRINT “X”, “Y”, “SIN(X + Y)”
30 FORI=1TON

40 READ X, Y

50 PRINT X, Y, SIN(X + Y)

60 NEXT 1

Loops may also be used to calculate sums and products of a list of
expressions, and this is discussed in the following chapter in con-
nection with the symbols 2 and [I.

1.3.8 Subscripted variables

It is frequently desirable in mathematics to use a variable with a
subscript, such as x;, so that many cases can be covered by a simple
formula. For example, we might write

=2 (=1,23,...,10) (1.5)

to specify that the x; are the squares of the integers up to 10
x,=1,x,=4,x;=9,...,x, = 100). In a BASIC program x; is
represented by X(I), the subscript being placed in brackets, and a
specific numerical value must be assigned to I in the program,
perhaps by a FOR loop. For example (1.5) may be calculated from

10 FOR1=1TO 10
20 X(I) = 12
30 NEXT |

It is also permitted for a variable to have two or more subscripts
attached to it. For example a matrix element a; may be repre-
sented by A(l, J).

Since a subscripted variable has more than one value associated
with it (while a non-subscripted variable has just one), it is neces-
sary to provide computer storage space for as many values as
might be needed. This is done by a ‘dimension statement’ of the
form :

line number DIM variable 1 (integer 1)
[, variable 2 (integer 2), .. .]

