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Preface

Inequalities play an important role in various questions of Calculus and
Functional Analysis; they connect certain quantities which are significant for
the problem under consideration. We think of such inequalities’ like estimates
for the norm of an operator, error estimates in numerical methods, and esti-
mates for the norm of a function that is extended to some larger domain,
furthermore inequalities characterizing the accuracy in approximating a func-
 tion etc:

—__Mainly those inequalities contain certam ‘constant” factors which depend
on some quantities of the problem considered. The values of the constants are
usually not specified. Therefore, two problems arise in that connection; the
first is to determine the best constant that assures the inequality to hold. Such
constants are also called sharp or exact ones. The other problem consists of
evaluating” effectively some numerical value of the constant for which the
inequality considered is true. That value should, obviously, be as near as
possible to the best one. There are some inequalities for which one of those
problems or even both of them can be solved. A large variety of such examples
is given in’[8] and [2]. We quote some of them here; they are taken from the -
Appendnx to the Russian tramiauon of the book [8]. X :

. Karlson’s inequality. Let a, be non-negative numbers&vhlch do not vanish
all together then - i

S ey <n*XadY nfad: : ; sl

the constant 2 cannot be made smaller, although the inequality itself may be

strengthened : (T a)* <Y 23 (n — 3)? a,,

2. There is a continuous analogue of Karlson’s mequallty Hfix)=20 and
f(x) £ 0 then o
( [ £(X) dr) < 2 j f2(x) d; fx f’(x)d\
211:' t
3. Let the function u(x) be 21-c-penodnc, [ u(x) dx = 0, and the k-th deriv-
g IR 1 |

ative u™® belong to L(0. 2m). If LSS <7 5 oo and — = | 4+ —=—
n r s
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then .
lull 0,27 = Cku”u(k)nl.y(o.zn)

- . : b 1« kr
where C,,:= min ¢, — §HL“(0,2,,, with @ (?) := = Yo% cos (m - T)
i ¥

n=1

Let us consider another example, cf. [26], Chap. IIl, § 13. Let the func-
tion u(x) be 2x-periodic and have a bounded k-th derivative, |[u®(x)| < M.
If E,(u) denotes the best approximation (in the C-metric) of the function u by
trigonometric polynomials of order n then

E(u) £ 4uMn,  E(u)'S Bow (u"", 2,1—“) e
Here w is the modulus of continuity, B,:= A4, + (2r)-* A;.,, and 4, can
be evaluated by
2k+2

f'Hk(t)l dr

0

Ay =
§ T

where Hy(f) := #-(cos t — cos 20), H(1):='[ H,_,(v) dr.

r

There is a considerable number of such examples, where the constants,
sometimes even the best ones, can be evaluated. However, for many important
problems the determination of the corresponding constants has encountered
~ reasonable difficulties. We mention here a relatively simple example.

Let £ be a bounded domain in the m-dimensional Euclidean space E™. As
usual, W3(£2) denotes the Subspace of functions belonging to the Sobolev
space W3(£2) which vanish at the boundary 92 of the domain £2. These func-
tions satisfy the so-called ‘Friedrichs inequality, '

[1u())? dx < x [|Vul* dx, x = const, (0
Q . Q .

sometimes also connected with the name of Poincaré. Here the factor % de-
_pending on £ occurs. Clearly the value of % for which (1) holds is not unique:
If the inequalit'y is true for some ' then it is true for any value x > %' also.
Hence, the best constant is the smallest value of the x-s; we shall denote it
by . It is not diffieult to characterize »,, namely, it is the reciprocal to the
* smallest eigenvalue of the problem X

Au+Au=0 in 2, ulpo = 0. (2)

In that case it is also not difficult to indicate effectively a value » for which
(1) is true. We enclose £ in a rectangular parallelepiped with the edges
a.a,,...,a,. The smallest eigenvalue of the problem (2) for that parallel-
epiped is n*(ai® + 43> + ... + a;2). An expansion of the domain does not
make the smallest eigenvalue of the problem (2) increase, therefore %o
S 7 %ai® + a2 + ... + a;?)=1.- Any number not smaller than x,.satisfies
the inequality (1) such that we may put

x:=n"%a;? + az®> + ... + a;?) 1. 3)
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The smaller the parallelepiped enclosing £2 is the closer the value (3) is to
L o - SEY-

Let us consider another example. The inequality (1) is also true for those
functions of W3(£2) which have a zero mean value over 2 (in that case it is

~called Poincaré inequality) provided that the domain £ satisfies the so-called

cone condition. Here, the first problem mentioned above can be solved in the
theoretical plane simply: The smallest » is equal to the reciprocal of the
smallest positive eigenvalue of the Neumann problem for the domain Q2. The
second problem is much more difficult: the technique for obtaining simple
and effective lower estimates for the eigenvalues of the Neumann problem is

-~ still unsufficiently developed.

From that example one can already imagine the considerable effort which
may be required for evaluating effectively a concrete constant. To determine
the best constant numerically can be particularly difficult. It is not by chance
that the corresponding constants in some inequalities are not specified. By the

‘way, exceptions from that “unfair” rule do exist. We mention here, in par-

ticular, many important contributions to the [Constructive Function Theory,
which are devoted to indicating the best values for the constants in inequalities -
characterizing the rate of approximation. However, in general one is fre-
quently satisfied with proving the existence of the ¢onstants needed. In many

~ cases such an argument is sufficient; but sometimes an information about the

numerical value of the constants is quite desirable. To give an idea of what
we have in mind, let us consider the following important example.

In various finite difference and finite element methods the error is estimated
by a term Ce(h) where i denotes the mesh parameter, and g is an increasing
function of A with ¢(0) = 0; mainly g(4) is a power of 4. The constant Cis
frequently not specified, and therefore the practical meaning of the estimate
is poor: we know only that the error estimate becomes smaller if the para-
meter h is decreasing, but we cannot say whether the estimate is small or
large for concrete values of h. Similar arguments can be found in the book [17].

The present booklet is essentially based on the author’s results and contains
five chapters. The first two chapters are devoted to extension constants; so we
shall call the factor in norm estimates for an extended function. In various
investigations we experienced the significance of the extension constants; they
play an important role in estimates for the constants in other inequalities of
Analysis. In Chap. I we derive estimates for the constants of the extensions .
suggested by H. WHITNEY, R. M. HESTENES, and A. P. CALDERON. Here we
develop also an extension procedure proposed by the author that yields the
smallest extension constant for functions of Sobolev classes.

In Chap. IT we determine the exact value of the smallest extension constant
for functions of the class W} originally defined on a ball. Then we are able,
in particular, to estimate that constant for star-like domains with a boundary
of certain smoothness. Furthermore, we evaluate the smallest constant for the
extension from the exterior to the interior of a ball.

In Chap. ITI we consider two problems in the theory of Sobolev spaces,
namely a theorem on equivalent norms and a theorem about the mollification
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of a function. Both problems are connected with certain mequalmes and the
corresponding constants are estimated, too.

Chap. IV is devoted to the constants in error estimates of finite element
approximations over a cubic grid (cf. the author’s book [I H). The basic func-
tions are taken as piecewise polynomials, and they lead to the best rate of
approximation with respect to the mesh parameter 4. In that chapter we widely
use the results of the foregoing chapters.

Chap. V was written by S. V. POBORCHI; it is based on his own results. The
same problems as in chapters IIT and IV are considered, only with respect to
the so-called anisotropic Sobolev spaces. I take the opportunity to express my
deep gratitude to S. V. PoBorcHI for compiling this chapter.

Throughout the book, except in the second chapter, we do not aim at
indicating the best values for the constants. We take the problem as solved if
we succeed in evaluating a concrete value for the constant that makes the
inequality considered true.

-

Leningrad, March 1980 S. G. MIKHLIN

I was pleased to learn that the present booklet published in German a few
years ago should be translated into English. Let me take the opportunity to
express my very deep gratitude to the editors of the TEUBNER-TEXTE zur Mathe-
matik for including it into the series, and for promoting the project of an
English- version. Finally, I very sincerely thank DR. REINHARD LEHMANN,
Halle, who made the German translation as well as the English one.

Leningrad, March 1984 S. G. MIKHLIN




I. The extension constant

§ 1. The problem

1.1. Let 2 and Q' be two sets of the m-dimensional Euclidean space E™
with Q < £2'. A function u; defined on Q' is called an extension to £’ of a
given function u defined on 2 if ;

ui (%) = u(x), xed. ; (1.1)

The problem of extending a function can be stated in a sufficiently general -
manner as follows.

Let # and %, be two Banach spaces of functions defined on 2 and Q'
resp. To every function u € 4 find its extension u, € #, such that

lu,lla, < Cllulla ‘ (1.2)

with a constant C that does not depend on w.

If £ is bounded and £, anbounded one adds usually the condition that the
extended function u; vanishes outside of a certain ball, one and the same for
all ue #.

The smallest value of C for which the inequality (1.2) is true, is cilled ex-
tension constant. It depends, in general, on the spaces # and #,. and also
on the procedure which relates the extension u, to the function ». If that
procedure results in a unique extension, we may speak of an extension oper-
ator. In that case the extension constant is just the norm of the extension
operator.

1.2. Frequently the Sobolev spaces W;(£2) and WX2') (p. 2 1, s integer)
resp., or the spaces C(2) and C(2") (s = 0) resp., are-tdken as-the spaces #
and.#,. In that case we speak of “an extension of functions of the class
W3(£2) (or C¥(£)) to the set £’ preservmg the class”. The class preserving
extension to the whole space E™ is of particular interest.

One of the first contributions devoted to the extension of functioms was
given by H. WHITNEY [24], where an extension of functions of the class C¥F)




12 \ I. The extension constant

\

(F being a, closed subset of [E™) to the whole space preserving the class is
considered. Another procedure for extending functions of the class C5(Q)
(22 being a‘bounded domain and s integer) to the whole space E™ preserving
the class was suggested by R. M. HESTENES [9]. V. M. BaBicH [1] and S. M.
NikoLski [16] applied the procedure of HESTENES to the class Wj(£2). A. P.
CALDERON [4] developed a procedure for the extension of functions of Wj(£2)
to the whale space which is based on the integral representation formula for
such functibns. The papers of H. WHITNEY and A. P. CALDERON are briefly
exposed in the book of E. M. STEIN [22]; there can be found another procedure
for the extension of functions of Wy(£2) to E™ preserving the class. It is worth
noting tha% STEIN’s procedure leads to an extension operator that dces not
depend on S, p, and Q. A proof of CALDERON’s theorem is also given in the
book [11]. :

In [11, 14] we proposed an extension procedure for functions of the class
W;(£2) which leads to the smallest extension constant.

In the subsequent sections of chapters I and IT we consider, more or less
completely\ estimates for the extension constants of the extension procedures
mentioned ‘above (except STEIN’s procedure); the procedures themselves are
briefly exposed too.

§ 2. The Whitne_y extension

We are\ going to consider here the simplest case where #:= C(F) and
C(IE"') with a bounded closed set F of E".

Let u(x)\,be an arbitrary function continuous on F. Its Whitney extens:on
to E™ is donstructed as follows cf. [22]. By F. we denote the complement
E™ \ F of F in E™. We give a sequence of cubes O, with the properties

\ )

(i) " the Edges of the cubes are parallel to the coordinate axes;
(i) for i & k the interiors of the cubes @, and Q; do not intersect;
(iii) diam Q; < dist(Q,, F) < 4 - diam §;;
() U Qi = Fc.
k=1 , a
For every natural number k there is a point p“ of F such that dist (Qy, F)
= dist (Qx, p¥). Furthe¥inore, we fix in F. a partition of unity as follows.
Choose a %mction @(x) with the properties.
peC=(E™), 0= () S 1; ;
¢(x) =1 inthecube —1 < x, =1 (1 2i = m); ¥
¢(x) = 0 outside of thecube —1 —e < x; <L +¢ (1 £i=< m);
with a fixed positive real ¢ (x; denotes. the i-th cartesian coordinate of the
point x). Let x* denote the center of the cube Q, and /, the edge length. Then

we put g,(x):= ¢((x — x*)/l,) such that, obviously, ¢,(x) = 1, x€Q,, and
@(x) = 0, x€ QF, where Qf is the cube O, homothetically enlarged by the

\ ] v -
\ :
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coefficient 1 + &. Finally, we put

riwi= 5D, 0= T pe), xek.

0
It is clear that 0 < g}(x) S 1 and ¥ ¢}(x) = 1.
k=1

The extension of the function u(x) to E™ is given by

u(x), x € F; ‘
u(x):=| o (2.1
{'Zl u(p*) pi(x), xe Fe;
and u,; € C(E™) can be proved.

In that case it is not difficult to determine the extension constant. The first
of the equations (2.1) yields [|u,|lcgm 2= ||#llcer), and the second one is esti-
mated v : =

Vx € Fe, (9l S max ()| 3 92() = max [u(IIS Tulcce

On the other hand,; for Vx € F we have |u,(x)] = lullcery such that |u,||cem
S lullewr and therefore ||uyllcemy = ||u|lcr, - The extension constant is equal
to 1. : '

The extension u; may be required to vanish outside of a certain ball, and
it is natural to assume F contained in the interior of that ball. Let R denote
the radius of the ball, and 8 be an arbitrary positive number. To make the
function u, zero outside of the ball it is sufficient to multiply it by a “cutting”
function, i.e. by a continuous function which is 1 if |x] < R, and 0 if
|x| > (1 + d) R, its range varying betweeg 0 and 1 if R < [x| < (1 + 0) R.
The extension constant remains still equal to 1.

-

§ 3. The Hestenes extension

3.1. Here we want to extend a function u € C%({2) from the domain 2 < E”
to a larger one. To begin with, we assume 2 to be-contained in the half-
space x,, > 0, where a part I” of the boundary I' = 02 forms a certain
(m — 1)-dimensional closed region of the plane x,, = 0. Following HESTENES, :
a function u can be extended preserving the class to the domain £’ situated
symmetrically to Q with respect to the plane x,, = 0: Let x = (x/, x,,) and
put 3 4 .

VX e, uy(x) = uy(x, x)t=3 A, —ex), G.1)
k=0 .

where 0 < ¢, < 1, and ¢, decreases with k increasing; the coefficients Ax
satisfy the simultaneous equations

@

i (&) 4 = 1., J= 0, w0, 3.2
k=0 ; .
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‘ Now we are going to estimate the constant for the extension of ue C¥(£2)
from Q to 2,:=2uU Q. To that aim we shall estimate |u;]lcsa), where
the norm in C%({) is defined as

Nullexay = lulica G- > 1u@le@, (3.3)

xj=s

and similarly for other domains. From (3.1) we find
luyllexan = Ilullcs(a)k;)llxl- (3.4)

The numbers 4, can be explicitly expressed by the ¢;: Indeed, 4, is a quotient
with the denominator being the Vandermonde determinant of the numbers
—&g, —E&1, .y —&, and the numerator being the same determinant only
with 1 in place of —¢,. Therefore,

S

Al = IT G + g,)/ (T 1=+ o 3.5)

Jj=0 j=

where the prime indicates omitting j = k. Now it is clear that the extension
constant in the case considered can be estimated from above by the quantity

L3+ e,)/ TTH st sl 0 (3.6)
k=0j=0 . i=0

3.2. For special choices of the numbers & we can derive from (3.6) more
specific estimates. Let us, for example, put & = 1/(k + 1), then we obtain
for the numerator in (3.5) a simple estimate,

tj (14 550) <80 +77)
' =st‘ (‘ £ ,i) < exp (Sil %) < exp(In(s + 1) +¢) = e(s + 1)

j=1 LA Jei

where ¢ = 0.57721566 ... is the Euler constant. For the denominator in (3.5),

"-1(1 1)15[(1_1)
j=0 ]+1 kf+1~j=k+1 k+ 1 j+l,

we have
k—l( 1 .9 1 —)—kl-_-ll k—j — 1
IATFT TR F 1T G+DEF D K+ D
and i
S 1 A 1 s j—k k + D! (s —k)!
1 (7 - 57 = 1L o@D - e e
J=k41 N+ 1 j+ 1 ki1 G+ DK+ 1) k+ 1)+ 1!
such that | ’ ~

A S o+ D+ (0T ) <2+ DK+ Y

Hence, we arrive at
s+2

S A < 2(s+ D) 5 (k+ 1 <t 2(s+ D[ K dk = 20 + 2 — 1],
k=0 k=0 i '
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and the extension constant is estimafed from above by

e (s + 2% — 1] = L.781 - 2[(s + 2y+' — 1]. 3.7

3.3. Now let us consider the extension through a part I'y of the boundary
0L, where we assume I, to be given in an appropriate local coordinate system
by the equation :

X o=ty fe C (3.8)
The mapping
Vg s o léjém_l, )’m=Xm“f(X') (39)

¢

-

transforms a part £, of the given domain £ into a certain domain {2, and
T, is transformed into a part of the plane y, = 0. By u'(y) we denote the
function u(x) (more precisely, its restriction to £,) under the mapping (3.9),
and by u1(y) the Hestenes extension of #'(y) through the part of the bound-
ary y,. = 0, where the. numbers &, are chosen as indicated in 3.2. Obviously,
there are two positive constants C, and C, such that for any function
ue C(9D) '

| Cllullenay < 1 lexagy < Callullenay- (3.10)

Those constants depend on the function f, and 1t is not difficult to determine
them; we may assume them to be given. : : -

By £2'* we denote that domain into' which the function #'(y) is extended,
and by 2* the image of the domain £2'* under the inverse mapping of (3.9)
X; =y, 1 £jSm~—1, X = Y + f(3). Finally, let Q,:= Qua*. We
may assume ‘t'he constants C, and C, to satisfy an inequality (3.10) for the
domains Q* and Q'*, too. Thus, we arrive at

Ci 5
lusllexeoms < &€ 270 + 27! = 11 lullexans (3.11) :
1 .
from which a corresponding inequality with © instead of 2, and QU Q*

instead of 2, Q* is easily derived. Now it is clear that the extension con-
stant in our case can be estimated from above by ;

%—ef 2l + D™ — 1] (3.12)

3.4, Let 2 be an arbitrary domain belonging to the class C°. We -shall
construct a locally finite covering of E™ in the following way. Every point of
the boundary 02 is taken as the center of a ball B with a sufficiently small
radius such that the part of 002 contained in the ball admits to a representa-

" tion (3.9) in a local coordinate system. From-the family of those balls we'
select by the Heine-Borel Theorem a finite number of them, say B, ..., By
they form a covering of a certain two-sided vicinity of 0£2. Let B, be a domain
of the class C° such that B, = 2 and B,, B, ..., By form a covering of Q.
Finally, take balls By,;, By2, ... such that they do not intersect with Q,
and By, By, ..., By, Bys1. ... form a locally finite covering of E™.

P
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Let {@,(x)} be a partition of unity subordinate to the covering {B,}. Ob-
viously, g, (x) =0if n > N and x € Q. Then we have

Vxe L, u(x) =k§0u(x) @i(x).

Each function w#(x):= u(x)gi(x) is extended in the following way: For
k = 0 put u,(x) =0, x€2; for 1 £ k £ N take u, as constructed in sec-
tion 3.3 multiplied by an approprlate cut-off function. As a result we obtain
the extension

uy(x): =k§0 U1 (%),

and by virtue of the considerations above it is obvious that
s llcxcemy = 75 €2 2°0(s + 2% — 1] [ullcxams (3.13)

where y, is a constant depending on the geometric properties of the domain Q.
Hence, we obtain in the case considered the following estimate from above
for the extension constant

(s, Q) < y, e 2[(s + 2P+ — 1]. (3.14)

As one can see from (3.14), the estimate for the extension constant consists
of two factors, one depending on the domain 2 and the other on the extension
procedure.

3.5. Using similar arguments, we may estimate the constant of the Hestenes
extension for functions belonging to Sobolev spaces, where we have to impose
additional restrictions on (2. It is worth noting that the estimate for the ex-
tension constant obtained may be improved if for the numbers ¢, one takes,
eg & = —(k + I)~*/2 instead of ¢ = —(k 4+ 1)-'. We will not dwell on
hese questions any longer; they are exposed in the paper [13] of the author.

§ 4. The Calderon exten’sion

4.1. We shall say that a surface I" = E™ is Lipschitz-continuous and write
I'e C®Y if T has the following characterization: For any point x € I" there,
is a local cartesian coordinate system (£, ..., &,) with origin at-the point x;
such that the part of the surface I” contamed in some nelghborhood of x has’
the representation

=f(£)’ £:= (51,---9 5»1-—1)’ ; ] (41)

‘and the function f satisfies a Lipschitz condition

LAE) — fE)| < AIF - & @2

with a constant 4 not depending on x. The class of bounded domains with
the boundary being a Lipschitz-continuous surface coincides with the class of
domains satisfying the cone condition or, equivalently, with the class of
domains which can be represented as the union of a finite number of domains




