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PREFACE

Many of the technical papers that have appeared in recent years contain
words related to linear graph theory such as “topological,” “graph
theoretical,” “cut-sets,” and “trees” in their titles. This is no accident. The
theory of linear graphs, itself currently in the process of mathematical
development, is being applied in a variety of apparently unrelated fields
such as engineering system science, social science and human relations,
business administration and scientific management, political science,
chemistry, and psychology.

The purpose of this book is not only to provide an ifitroduction to the
fascinating study of linear graph theory but to bring the reader far enough

.along the way to enable him to embark on a research problem of his own,
whether it be in the theory of linear graphs itself or in one of its manifold
applications.

It would be impossible to discuss all of the applications of linear graphs
in one book; instead we will concentrate on electrical network theory,
switching theory, communication net and transportation theory, and system
diagnosis.

I would like to thank Dr. N. Wax for invaluable suggestions and reading
and correcting the final manuscript. Thanks are also due Dr. M. E. Van -
Valkenburg and all past and present members of the systems group in the
Coordinated Science Laboratory at the University of Illinois for their direct
and indirect support for the accomplishment of this book.

WATARU MAYEDA

Urbana, llinois
October 1971
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INTRODUCTION

There are many physical systems whose performance depends not only on
the characteristics of the components but also on the relative locations of
the elements. An obvious example is an electrical network. If we change a
resistor to a capacitor, generally some of the properties (such as an input
impedance of the network) also change. This indicates that the performance
of a system depends on the characteristics of the components. If, on the
" other hand, we change the location of one resistor, the input impedance
again may change, which shows that the topology of the system is influencing
the system’s performance. There are systems constructed of only one kind of
component so that the system’s performance depends only on its topology.
An example of such a system is a single-contact switching circuit. Similar
situations can be seen in nonphysical systems such as structures of adminis-
tration. Hence it is important to represent a system so that its topology can
be visualized clearly.

One simple way of displaying a structure of a system is to draw a diagram
consisting of points called *vertices” and line segments called “edges”
which connect these vertices so that the vertices and edges indicate com-
ponents and relationships between these components. Such a diagram is a
linear graph. A linear graph often is known by another name, depending on
the kind of physical system we are dealing with; it may be called a network,
a net, a graph, a circuit, a diagram, a structure, and so on.

Instead of indicating the physical structure of a system, we frequently
indicate its mathematical model or its abstract model by a linear graph.
Under such a circumstance, a linear graph is referred to as a flow graph, a
signal flow graph, a flow chart, a state diagram, a simplical complex, a
sociogram, an organization diagram, and so forth.

The earliest known paper on linear graph theory (1736) is due to Euler,
who gave a solution to the Konisberger bridge problem by introducing the
concept of linear graphs. In 1847, Kirchhoff employed linear graph theory
for an analysis of electrical networks, known today as the topological formulas
for driving point impedances and transfer admittances. This probably is the
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2 Introduction

first paper that applies the theory of linear graphs to engineering problems.
However, it is not Kirchhoff’s paper but Mobins’ conjecture (about 1840)
concerning the four-color problem that seems to attract many scholars to
devote themselves to linear graph theory.

The four-color problem is to prove or disprove that four colors are
sufficient to color any planar map such that no two adjacent regions have the
same color. Place one vertex inside of each region of a planar map, and then
connect two vertices by an edge if and only if the regions containing these
vertices are adjacent to each other. These operations yield what is known as a
planar graph. In other words, for a given planar map, there is a planar graph
such that a region of the map corresponds to a vertex in the linear graph and
the boundary between two regions corresponds to the edge connected between
two vertices which represent these two regions. We may restate the four-color
problem as follows: Prove or disprove that four colors are sufficient to color
vertices of any planar graph such that no two vertices connected by an edge
have the same color.

If you try to attack the four-color problem, you will immediately face the
difficulty of distinguishing planar graphs from nonplanar graphs, and you
will start to study the properties of planar graphs. In spite of the work done
by Kuratowski and Whitney, who discovered fundamental properties of
planar graphs, the four-color problem is still unsolved and attracting many
scholars to devote themselves to search for more properties of linear graphs.
Of course, some properties have been found because of the necessity of
specific applications. '

The first part of this book is the study of properties of linear graphs for
beginners. This does not mean that we are studying only elementary and
simple properties. In fact, it covers the most advanced materials such as the
following:

1. The property of collection {P;;} of paths, suitable for generating all
possible paths, and properties among collections of paths.

2. How to generate cut-sets; especially, how to generate all possible cut-
sets separattug twd specific veptices. These cut-sets are very important in
communigation nets and traffic systems.

3. Proofs of realizability conditions of cut-set matrices including Tutte’s
condition. .

4. A proof of Kuratowski’s conditions for nonplanar graphs and a proof
of Whitney’s condition for planar graphs (duality).

5. An introduction to pseudo-cuts, which become the dual of paths when
a linear graph is planar, )

6. An algorithm for testing the existence of directed circuits in oriented
linear graphs. '
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7. The development of two types of generation of all possible trees without
duplications.

When ve discuss applications of linear graphs, we often use weighted
linear graphs where edges and (or) vertices have specifications known as
weights. For example, we can represent a passive linear bilateral lumped
electrical network by a linear graph where each edge has three weights (e.g.,
voltage, current, and a proportionality factor) as discussed in Chapter 7. To
study maximum flow in a communication net or a traffic system, the corre-
sponding linear graph often needs only one weight on each edge indicating
the maximum capability of handling traffic by the edge (in Chapter 12). We
can see that suitable weighted linear graphs can represent many other systems
such as switching circuits, logic circuits, air traffic networks, and computer

systems,
. There are cases when such a weighted linear graph may be used only for

representation of a system. However, in this book, we study how to employ
weighted linear graphs in order to analyze systems, particularly one such
* method known as the topological method of analysis. There are two distinct
types of topological method ; one is to use rules known as topological formulas
so that the property of the system that is in question can be studied directly
from a weighted linear graph, and the other is to employ so-called equivalent
transformations successively so that a weighted linear graph of a system will
be simplified to consist of only one edge whose weight indicates the property.
Examples of the first type include the following: (1) calculate electrical net-
work functions by finding all possible special subgraphs of the weighted
linear graph corresponding to a given linear lumped electrical network (given
in Chapters 7 and 8); (2) find the maximum flow by locating a so-called
minimumnt cut in a communication net and a traffic system (shown in Chapter
12);-and (3) obtain a switching function by finding all possible paths between
specified terminals in a switching circuits (discussed in Chapter 11). Some
examples of the second type are (1) the node elimination technique to obtain
a simpler signal flow graph (indicated in Chapter 10) and (2) equivalent
‘transformations for a linear electrical network (given in Chapter 8).

The topological analysis of the first type gives a clear relationship between
a property of a system and the locations of edges (components). In several
cases, this relationship is enough to design or improve a system which satisfies
a given specification, and this is called a topological synthesis of systems. The
synthesis of switching functions and that of communication nets (in Chapters
* 11, 12, and 13) are good examples. The system diagnosis discussed in Chapter
14 again indicates that linear graph theory is an essential tool in the system
theory area.



CHAPTER

1

NONORIENTED LINEAR GRAPH

1-1__INTRODUCTION

In this chapter, some properties of paths and circuits of a nonoriented
linear graph are discussed. The paths and circuits are rather important sub-
graphs of linear graphs. For example, we will see later that paths determine the
properties of switching networks, and circuits are related to Kirchhoff's
voltage law in electrical network theory. ‘

For defining linear graphs, it would be easier if we consider the familiar
tetrahedron shown in Fig. 1-1-1. There are four vertices 1, 2, 3, and 4 and six

Fig. 1-1-1. A tetrahedron.

edges, a, b, ¢, d, e, and f. Each edge is located between two vertices; edge a is
between vertices | and 2, edge b is between 1 and 3, edge c is between 2 and 3,
and so on. In combinatorial topology, a collection of vertices and edges is
known as a simplical one-dimensional (linear) complex, which we call a
linear graph. However, the definitions of vertices and edges are more general
than those of polyhedrons. '

To expand the concept of vertices and edges geometrically, consider an
n-dimensional Euclidear space. First, a vertex is a point in the space. With a
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given set Q of vertices, an edge e is a curve between two vertices v and v" in
Q which passes no other vertices in Q. The vertices v and v’ are called the
endpoints of edge ¢. When v and ¢’ are the same, then edge ¢ as shown in
Fig. 1-1-2a is called a **self-loop.” If we give a direction to a curve as shown
in Fig. 1-1-2b, then an edge represented by the curve is called an oriented
edge. Otherwise, it is a nonoriented edge.

‘ Fig. 1-1-2. Edges. (a) Self-loops; (b) ori-
(a) (b) ented edge.

We may now use the preceding geometrical concept to derive an abstract
definition of edges, vertices, and linear graphs. Instead of chosen points (in a
space) being vertices, we take a set such that members in the set are given
vertices. Geometrically, an edge is a curve between two vertices. Since there
re no other vertices in the curve, we can consider an edge to correspopd to a
pair of vertices. On the other hand, we would like to allow several edges
having the same endpoints. Hence the definition of vertices edges and a
linear graph become abstractly as follows,

Definition I-1-1. Let & and Q be sets. If every e e &* corresponds to.
exactly one pair (v, t') where v, v € Q, then every member in & is an edge,
every member in Q is a vertex, and & U Q' is a linear graph.

With this definition, the endpoints, oriented edges, and nonoriented edges
are defined abstractly as follows.

Definition 1-1-2. let e be an edge corresponding to a pair (v, v') of
vertices, Then the two vertices v and ¢ are called the endpoints of edge e. If
the pair (v, ') is ordered, then e is said to be oriented or called an oriented
edge, Otherwise, e is said to be nonoriented ot is called a nonoriented edge.

Furthermore, we define oriented and nonoriented (linear) graphs as follows.

Definition 1-1-3. If all edges in a linear graph are oriented, then the linear
graph is said to be oriented or called an oriented (linear) graph. If all edges
are nonoriented, a linear graph is said to be nonoriented or called a non-
oriented (linear) graph.

* The symbol € means “belong to” or “‘in”. e€ & means e in &,
T & L Qis a set of all members in either & or Q or both.



6 Nonoriented Linear Graph

Example 1-1-1. We use the symbol « — B for indicating that « corresponds
to B. Consider two sets & = (a,b, ¢, d, e, f, g) and Q = (1, 2, 3, 4, 5) where

a—(1,2)
b—(1,3)
c—>(2,3)
d—(1,4)
e—(1,4)
f_')(4: 2)
and
g—~(2,49)

Since each member in & corresponds to exactly one pair of vertices in €,
a, b, d, e, f.and g are edges, 1, 2, 3, 4, and 5 are vertices, and § U Qs a’
linear graph by Definition 1-1-1. Vertices 1 and 2 are the endpoints of edge a,
vertices 1 and 3 are the endpoints of edge b, and so on (Definition 1-1-2).

Instead of using the symbel « — B as in the foregoing example, we use a
drawing to indicate edges and the corresponding pairs of vertices. For this,
we make the following agreements.

1. A vertex will be indicated by a small circle. When the name of a vertex
must be indicated, it will be written either at a place near a circle or inside
the circle as shown in Fig. 1-1-32 and b.

lo ©

fa) (b)
Vo—& oV Vo— oV

(c) (d)

Fig. 1-1-3. Representation of vertices and edges. (2) Representation of a vertex 1; ()
representation of a vertex 1; (c) nonoriented edge ¢ (v, v'); (d) oriented edge ¢ (v, v').

2. When an edge is nonoriented, the edge is represented by a line between
two vertices which are the endpoints of the edge. The name of an edge will be
given at a place near the line if needed. As an example, a nonoriented edge
e — (v, V") will be represented by a line shown in Fig. 1-1-3c.

3. When an edge is oriented, the edge will be represented by a line with an
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arrow to indicate its orientation. As an example, the representation of an
oriented edge e — (v, v') is shown in Fig. 1-1-3d.

Note that when v and v’ of e — (v, v') are the same, then edge e is a self-
loop and the line representing edge e is a loop starting from vertex v (a small
circle representing vertex v) and terminated at the same vertex.

Since we need know only a pair of vertices for each edge, a shape of line
representing an edge is immaterial. For example, an edge in Fig. 1-1-3c and
those in Fig. 1-1-4a and b represent the same edge.

vl
(a) (b)
Fig. 1-1-4. Representation of edge e (v, r’). (a) Edge ¢, (b) edge e.

In a drawing, crossing points of edges other than those represented by small
circles are also immaterial. For example, even though edges a and % in
Fig. 1-1-Sa are crossing each other, this drawing indicates only that non-

| 2 i 2
3 4 3 9
(a) (b)
Fig. 1-1-5. Crossing of edges. (a) Edges a and b; (b) four edges

oriented edge a corresponds to pair i1, 4) and nonoriented edge b corresponds
to pair (2, 3). Note the difference between those in Fig. I-1-54 and b.

With these agreements, we can specify a linear graph by a drawing. As an ex-
ample, the linear graph € U Qin Example 1-1-1, where & = (a, b,¢,d, e, f, g)
and Q = (1, 2, 3, 4, 5) with each pair of vertices being considered as a non-
ordered pair, can be represented by Fig. 1-1-6. Note that vertex S is not in
any pair in this example. Hence there will be no lines connected to vertex 5.

Since a drawing gives a clear and simple representation of a linear graph,
we use such drawings for specifying linear graphs in this book.
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Fig. 1-1-6. A linear graph. Fig. 1-1-7. An oriented graph.

With Definitions 1-1-2 and [-I-3, we can see that a linear graph in Fig. -
1-1-6 is nonoriented and that in Fig. 1-1-7 is an oriented (linear) graph. Note
that Fig. 1-1-7 is the linear graph when all pairs of vertices in Example 1-1-1
are ordered pairs.

Until the later chapters, we will consider only nonoriented linear graphs.
In other words, in the next few chapters, a linear graph means a nonoriented
linear graph.

1.2 PATHS AND CIRCUITS

An edge is said to be incident or connected at a vertex if the vertex 1s one of
the two endpoints of the edge. For example, edges a, b, and ¢ in the linear
graph Fig. 1-2-1 are incident (or connected) at vertex A. Edges a, d, ¢, and f
are incident at vertex B. '

Fig. 1-2-1. A linear graph with self-loops.

The number of edges incident at each vertex is very important to characterize
linear graphs such as paths, circuits, and Euler graphs. So we define the
degree of a vertex as follows.

Definition 1-2-1. The degree of a vertex v, symbolized by d(v), is defined as
d(v) = 2n, + n, (1-2-D

where #, is the number of self-loops incident at vertex v and #, is the number
of edges other than self-loops incident at vertex v.
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For example, the degree of vertex A of a linear graph in Fig. 1-2-1 1s
d(A) = 3 because n, = 0 and n, = 3 at this vertex. The degree of vertex B
is d(B) = 2(2) + 2 = 6 where n, = 2 and n, = 2 at vertex B. The degree of
vertex Cis d(C) = 5.

Suppose edge e is connected between vertices p and ¢ (i.e., the two end-
points of edge e are p and g). Then we count edge e as 1 for both d(p) and
d(q) for p # q. When p = q, edge ¢ (which is a self-loop) will be counted as
2 for d(p). This is true for every edge in a linear graph. Hence the summation
of the degrees of all vertices is equal to twice of the number of edges in a
linear graph. That is,

Ea d®) = 2n, (1-2-2)

where > means the summation for all vertices in linear graph G and =, is

veG
the number of edges in G. For example, in Fig. 1-2-2, d(A4) = 3, d(B) = 2,
d(C) = 3, d(D) = 2, and d(E) = 4. Thus ‘}:G d(i) = 14. The number of
€

edges in the linear graph is 7.

Fig. 1-2-2. A hnear graph.

Consider the linear graph in Fig, 1-2-2 as a map in which vertices indicate
cities and edges indicate highways. We can see that there are several highways
going from one city to another. Suppose we are planning to travel from a
city A to a city D. If we list highways according to the order by which we
are going to travel from city 4 to city D, we will have a sequence of edges
which specifies a particular route from A to D. The vertex corresponding to
the origin is called the initial vertex and the vertex corresponding to the
destination is called the final vertex. As an example, with initial vertex 4 and
final vertex D, some sequences of edges of a linear graph in Fig. 1-2-2 are
(c, e), (a,d, c,f, g, €), and (c, d, b). It must be noted that each edge in the
sequence discussed has one vertex in common with the preceding edge and
the other vertex in common with the succeeding edge. For example, in sequence
(¢, d, b), vertex E of edge 4 is an endpoint of preceding edge ¢ and vertex C



