FORTRAN IV

FOR BUSINESS
AND GENERAL
APPLICATIONS

FORTRAN IV

FOR BUSINESS
AND GENERAL
APPLICATIONS

HARICE L. SEEDS

Los Angeles City College

JOHN WILEY & SONS, INC.
NEW YORK

LONDON

SYDNEY

TORONTO

This book was set in Times Roman by Graphlc)
- Arts Composition, Inc. It -was printed and bound

by Hamilton Printing Company. The text and

cover designer was Jerome B. Wilke. The

drawings were deslgned and executed by John

Balbalis with the assistance of the Wiley

Tlustration Department. Photographs courtesy of

Alice Belkin, Burroughs, Computer Machinery
Corporation, International Business Machines,

National Cash Register, Trendata, and Xerox

Corporation. Regina R. Malone supervnsed

production. _ i L

Copyright @ 1975, by John Wiley & Sons, Inc.
All rights reserved. Published simultafistQpgly 1n Canada.

No part of tis book may be reproduced by a#y means, nor
transmitted, nor translated into a machine language with-
out the written permission of the publisher. ,

Lidrary of Cengress Cataloging in Publication Des:

" Seeds, Harice L

FORTRAN T™.for business and. M applications.

Includes index.
1. FORTRAN (Computer program languagc) 2. Elec-
tronic data processing—Business.
1. Title.
HF5548.5.F28344 -001.6'424 74-34058
ISBN 0-471-77109-0

Printed in the United States of America
10987654321

Preface

The FORTRAN language is a tool for solvmg problems. Its versatil-
ity, especially as developed in the version known as FORTRAN 1V, is
limited only by the imagination of its users. Many computer languages -
have been developed in recent years for special purposes, but FOR-
TRANYV remains one thatis applicable to a wide variety of purposes. It
is also the most common computer language and is found on almost all
digital computers.

Manufacturers,-software companies, and other businesses are be-
coming more and more aware of FORTRAN's usefulness. They see
advantages in the comparatively short initial learning period required for
programmers. They also see that less time is needed for developing
individual programs because less coding and fewer commands are re-
quired than in the traditional business languages.

This book deals mainly with business problems, but students in the
social sciences, humanities, and other nonmathematical disciplines will

-find it useful and easy to understand. Laymen’s terms explain concepts
that are too often hidden in technical jargon. Technical terms are intro-
duced and -explained as they are used so that students will become
familiar with them. Each new concept is presented as simply as possible,
both as a separate development and in relatlon to its use with other
FORTRAN capabilities.

This is accomplished partly by presenting a programming problem
that begins as a card-to-printer listing and develops through several
additions into various billing programs for a business firm. The programs
incorporate most of the features of business data processing and of
FORTRAN IV. Although other applications are also developed, the
concentration on one basic program enables the student to see the new,
increased capabilities most advantageously. It also enables him to com-
pare and contrast FORTRAN IV.techniques by seeing different solu-
tions to the same basic problem. ‘

Another unique feature of program development is the consistent
use of card layout forms, printer spacing charts, and flowcharts. These
programmer aids show the student the various considerations involved
‘in commercial programming and the necessity for complete documenta-
tion.

Several programmirg assignments follow each programming chap-
ter. All assignments demonstrate the instruction being studied as it is
encountered in actual programming, and they were carefully developed
torequire only the FORTRAN IV capabilities already studied. Although

v

vi
PREFACE

the assignments are realistic, they are purposely simple so that the
student can develop and execute several programs during the course.

A Iist of chapter objectives introduces each chapter. Review ques-
tions are interspersed throughout the chapters for study checkpoints. At
the end of each chapter, just before the programming assignments,
students are asked to review the chapter objectives. Thus the objectives
not only introduce the FORTRAN capability but also are a chapter
summary and an aid for review.

When the FORTRAN IV language is studled concurrently with, or
follows, a general computer science or business data processing course,
Chapters 1 and 2, which are introductory, can be skipped and program-
ming can be in'trodu_ced immediately. When the instructor introduces
the FORTRAN language, he can start with either Chapter 3 or Chapter:
5. Chapter 3 explains and develops a short, complete FORTRAN IV
program to input and output data. Chapter 4 extends this program so that
unlimited amounts of data can be read and printed. Chapter S, on the
other hand, concentratés on literals in printed output. ’

The study of Chapter 5 before Chapters 3 and 4 enables the student
to write programs at the first class meeting. He becomes familiar with
computer output before encountering the intricacies of field
specifications, Thus he has high enthusiasm from seeing the results of
his programming efforts so quickly, and this interest extends into the
study .of the more complicated concepts of Chapter 3. The student also
learns many aspects of formatting while at the height of his enthusiasm.
This is a distinct advantage because report form is important in business
data processing. The book’s flexibility allows the mstructor to choose
the approaches that he prefers.

The arrangement of FORTRAN IV instructions and the importance
placed on actual programming exergises give students a usable tool no
matter how far the course extends. For business survey courses or for
general education classes, this is particularly valuable. By the time the
student has completed Chapter 11, he can program any FORTRANIV
problem, although the program may be longer than it will be when all of
the language capabilities are learned. He also knows what tasks com-
puters can perform. This is an educational requirement not only for
businessmen but for all laymen in the 1970s.

* Harlce L. Seeds

Contents

BT IR - NV N

10

12

13
14
15

16
17
18
19
20
21
22
23
24
25

26

v Introductlon to Programmmg 1

Programming Preliminaries:

Flowcharts, Printer Spacing Charts, and Card

Layout Forms 15
Comment, READ, WRITE, and FORMAT Statements 27
GOTO Statement and END = Option in READ Statement 51

‘Literals in FORMAT Statements 61

Arithmetic Statements 77

Alphameric Fields and the ‘‘Open’’ Hollerith Format 95

Arithmetic IF statement 115

Logical IF Statement; Relational and Logical Operators,
Logical Expressions 143

DO and CONTINUE Statements 155

DIMENSION Statement and Arrays 171
* Implied DO Loops 195 ‘
*Subtotals and Control Breaks ‘211

The Computed GoTto Statement 235
Type Specification Statements 247 ,
DATA Specification Statements 267
EQUIVALENCE Statement 283

_ Subprograms: Introduction 297

Subprograms: Statement Functions 301

Subprograms: Functions 311

Subprograms: Subroutines 333

Subprograms: COMMON and BLOCK DATA Statements 345

Logical Primaries 359 .

ASSIGN and Assigned GOTO Statements 371 -

Unformatted READ and WRITE Statements;
NAMELIST Statement; Special Techniques to Inpui
Format Specifications 383

The Debug Packet 401

viii
CONTENTS

Appendixes

Typical Yob Control Cards for IBM S/360 and S/370 OS
and DOS Systems 411

Data Card Set for Assignment Problems 412

Program LETTER: Use of the IF and Computed GOTO
Statements with Alphameric Fields 413

List of Common FORTRAN Mathematical Functions 415

Collating Sequence of Graphic Symbols, with .
Hexadecimal Representations 416

Index 419

1

Introduction to Programming

FORTRAN is a language that requires very little knowledge of the
innér manipulations of a computer. The FORTRAN language itself
takes care of most of the details a computer requires. Some computer
knowledge helps, however, in understanding terms and procedures, and
most people who are interested in programming want to know how the
computer accomplishes its amazing feats. Therefore this introductory
chapter presents an overview of (1) the computer, (2) data as storedand
used by computers, and (3) the development of computers and computer
programming languages. Each of these topics is presented briefly to
introduce the reader to basic concepts of computer development and to
initiate him to computer-oriented vocabulary terms. Each computer
concept has many aspects. Books ranging from easily understood

. laymen’s language to highly technical terminology are available if the

reader wishes to explore these aspects more fully.

Computer Hardware

In computer terminology, the physical equipment or devices of a
computer are called hardware. Computer programs of instructions are
called software. A quick survey of computer hardware and software
provides background for a study of the FORTRAN language.

FORTRAN 1V.is the most modern version of the FORTRAN
language. Programs in FORTRAN IV can be processed by virtually all
modern computers, such as IBM S/360, S$/370, 1130, and System 3
computers, Xerox, Burroughs, CDC, and Univac computers. These are

2
INTRODUCTION
TO
PROGRAMMING

REVIEW
QUESTIONS

virtually all third--and fourth-generation computers that can perform
intricate manipulations unknown to earlier computers.

The word computer gives the impression of one machine. Actually,
computer system is a more accurate term because computers consist of
several ‘devices. Each device is a machine consisting of its own elec-
tronic circuitry but-connected to the other computer equipment.

Computer systems vary in size according to manufacturer, series,
model, and amount of storage. Their physical shapes differ, depending
upon which equipment is utilized. Some devices may not even be
physically in the same area as the rest of the system. They may be afew
feet away (in the next office or upstairs, for example) or they may be
hundreds of miles away from the central system.

1. In computer terminology, what is computer equipment called?

2. Why is the term ‘‘computer system’’ more accurate than the word
computer?

3. What facters determine the physical appearance of a computer?

Central Processing Unit

. Because physical appearance can differ so w1dely, Figure 1 demon-
strates the way computers: function regardless of specific devices.

Of all parts of a computer, the Central Processing Unit (CPU)

performs the greatest number and the greatest variety of tasks. It is one

AUXILIARY
STORAGE
{MEMORY)

CENTRAL P'ROCE|SSING UNIT

' PRIMARY '
INPUT UNIT STORAGE OUTPUT UNIT
v (MEMORY)

P ¢
CONTROL
UNIT

i 14

ARITHMETIC
and LOGIC
UNIT

Figure 1 Schematic diagram of computer systems.

3

CENTRAL
PROCESSING
UNIT

piece of equipment, but it contains the Arithmetic-Logic Unit, the
Control Unit, and primary storage. The *‘face’ or front of the CPU is a
visual display unit.called the console. By its lights, the console gives
information to the operator about operations being performed by the
computer. Many of the dials, switches, and keys on the console can be
used by the operator to give operational instructions to the CPU itself.
Thus, in a special way, the Central Processing Unit is also an
input/output device.

The most essential parts of the CPU however, are within
it. The arithmetic-logic section performs the basic arithmetic processes
of addition and subtraction, multiplication and division. (Technically,
multiplication and division are variations of addition and subtraction.)
No matter how-complicated mathematical calculations are, computers
break them down to these arithmetic processes. The Arithmetic-Logic
Unit of the CPUjalso stores (briefly), shifts, and transfers data. It
compares data and makes decisions that depend upon whether the two
compared items are equal or unequal. This last process of comparing
and branching is thé essence of ‘‘logical’’ operations.

The control section of the CPU is the computer’s *‘‘traffic man-
ager.”’ The Control Unit coordinates the interaction between units of the
computer. It directs the order by which operations will be performed. It
also determines when input/output devices will transmit and when data
will be transferred to and from storage.

Storage in the CPU (and on disk in fourth-generation virtual storage

computers) is often termed ‘‘main’’ or ‘‘primary’’ memory. Until the

late 1960s, primary storage usuaily consisted of magnetic cores. These
are tiny iron rinigs (Figure 2). They can be magnetized in millionths of a
second, and they keep the magnetism until-it is deliberately changed.
The cores are. either ‘‘on’’ (magnetized clockwise usually) or “‘off”
(magnetized counterclockwise usually).

Magnetism in magnetic cores) ~ Two half—currents activate a core

Figure 2 ‘ Binary states of magnetic core.

4
INTRODUCTION
TO
PROGRAMMING

REVIEW
QUESTIONS

These states of magnetic core are binary because only two condi-
tions are possible: clockwise or counterclockwise, “‘on’’ or ‘‘off,”’ 1 or
0. Thus the clockwise/counterclockwise or on/off state of a core in

‘memory is represented numerically by a binary digit, either 0 or 1. In

discussing computer storage, 0 represents the off condition, and 1 rep-
resents the on condition. Such discussions frequently refer to binary
digits as “*bits.’™

Today most primary storage is composed of miniaturized circuitry.
Although more difficult to visualize than core, its components also
utilize the principle of binary condmons and are represented by binary
dlgxts

4. Which part of a computer performs the greatest number and greatest
variety of tasks?

§. What is the *‘face’’ or front of the CPU called?

6. What does the control unit coordinate?

7. Which part of the CPU performs addition, subtraction, multiplication
and division?

Auxiliary Storage Units

REVIEW
QUESTIONS

Additional storage units increase the memory capacity of a com-
puter. They usually are called auxiliary or secondary storage. Storage
that'is separate from the CPU takes many forms, but each uses the
binary pnnclple That is, a spot either is or is not magnetized; a punch
either is or is not present. Punched paper tape, magnetic tape, magnetic

- disk, magnetic drum, and magnetic strips in data cells are all forms of

auxiliary storage. So are punched data cards. Each form needs its own
special ‘‘reader’” or drive. However, an installation can use different
devices in any combination that is deemed best for its own jobs.
Before information in auxiliary storage can be utilized, however, it
must be transferred into the primary storage area of the Central Proces-
smg Unit. Only in the CPU can any processing except input/output
occur. Figure 3 shows the devices and medla that are most frequently

used for auxlhary storage.

8. Name three types of auxiliary storage.

9. What is the meaning of a ‘‘binary’’ condition?
10. How is all computer storage a form of binary states or conditions?
11. Where must data be stored before they can be processed?

Input/Output Devices

Inputfoutput devices all have the same purpose: to get information
into or out of the Central Processing Unit. Computer programs fre-

5
INPUT/OUTPUT

DEVICES

INPUT DEVICES
AND MEDIA

Console typewriter

Readers for
Punched cards
Paper tape
Magnetic tape

Magnetic dick
Magnetic drum
Magnetic ink

Remote terminals
Typewriters

Cash registers

Etc.

Optical characters

CRT display units

Touch—tone units

AUXILIARY MEMORY
MEDIA :
Magnetic tape
Magnetic disk
Magnetic drum
Magnetic strips
in data cell
Punched cards
OUTPUT DEVICES
AND MEDIA
Printed report
CENTRAL Punched cards
PROCESSING Paper tape
UNIT Magnetic tape
Magnetic disk
Magnetic drum
o PRIMARY “’T";mf orminals
MEMORY CRT display units
Audio {voice) response
T< l Etc.
CONTROL
UNIT
ARITHMETIC
and LQGIC
UNIT

Figure 3 Devices and media in computer systems.

quently print reports, but computer output is increasingly intended for
later use as input for another computer program. The most common
medium that can be both input and output is still punched cards. The
uses of magnetic tape and magnetic disks are growing, however, be-
cause they require little handling and are fast in operation. Storage on
magnetic tapes, magnetic disks and drums, and in data cells also takes
far less space than card storage does.

The most dramatic advances in recent computer development in-
volve such input/output devices as voice recognition units, optical
character scanners for handwritten or printed characters, microfilm
printers, and cathode ray tube (CRT) display units that look like small
television screens. No matter what medium is used, however, every
input device must perform the task of transmitting data that the CPU can
utilize finally in machine-understandable (binary) form, and every out-

s

6
INTRODUCTION
TO

PROGRAMMING

put device must transmit from bmary form into human—understandable
or machine-understandable form. .

Many input/output media, such as punched cards or magnetic tape,
are auxiliary storage until the data records are required for input.

Characters, Fields, Records, and Files

REVIEW
QUESTIONS

The basic element of computer input or output is called arecord. 1t
is all the information related to one subject. That subject can be an
inventory item, a customer, or an employee, for example. A record can
be a punched card report of a purchased item, a line of print ina payroll
report, or data input or output on a magnetic tape or disk. Minimum and
maximum record lengths depend on the input or output medlum (card
tape, disk, etc.) transmitting the data. -

‘A record is made up of one or more pieces of mformatlon ealled data
fields or simply fields. A punched card record, for- mstance, could
contain the identifying number, price, and quantity of an item for sale.
Each of these three units of information related to the sale jtem is a
numeric field. Numeric fields contain only nurheric characters That is,
they can contain only numbers, plus or minus signs, and decimal points.
Dollar signs and commas cannot be part of a FORTRAN numeric field.
If a signis not part of a numeric field, the field is assumed to be positive.

If the name of an item is present, that field is alphameric. This
means that its characters can be alphabetic, numeric or special charac-
ters. FORTRAN alphabetic characters include,not only all the letters of
the English alphabet, biit also the dollar sign ($). Special characters
include everything else in the computer printer set of characters, such as
punctuation marks, symbols like the percentage sign (%) and ampersand
(&), and the blank (usually signified in writing as §). Alphameric fields
have many special capabilities as well as special rules in FORTRAN.
These are discussed and demonstrated at considerable length through-
out the text.

Fields are always part of a record. A collection of records is called a
file. Time cards for all employees form a time card file. A magnetic tape
or disk with all customers’ names and addressesis afile. A printed report
is an output file to the computer. Ordinarily, a business program proces-
ses one complete file of records.

12. What are the basic purposes of input/output devices?

13. Why are magnetic tapes and magnetic disks used increasingly?
14. What is a.record?

15. What is a field?

16. What is the difference between a numeric and an alphameric field?
17. What is a file? -

7
SOFTWARE

Bytes-

" A number, letter, or special character ordinarily takes one column
in a punched card or one print position on a printed report. In IBM S/360
and S/370 and System 3 computers, and in other third- and fourth-
generation computers, a character occupies one byte of computer stor-
age. These computers are often called ““8-bit byte’’ computers because
each character is represented by 1 byte consisting of 8 bits or binary
digits.? These bits are the numeric representations of magnetic core or
other units of computer storage that have only 2 possible states: *‘off”’
(0) or ““on’’ (1). Fortunately for the FORTRAN programmer he rarely
needs to be aware of these internal storage details. He should know that
the storage unit for a character is a byte since the term is often used in
discussions.

Software

In order to utilize the capabilities of a computer, a person must
analyze his problem to see how a computer can solve it. Then he:must
instruct the machine to do the required processing. At first, such instruc-
tions were wired into acomputer, and only data were ‘‘read’’ by aninput
device so that it could be stored and processed.

Not long after electronic computers were first in operation, how-
ever, the great mathematician John von Neumann observed that compu-
ter memories could store not enly data but programs of instructions as
well. His ‘‘stored program concept’’ developed into series of instruc-
tions stored in computer memory to manipulate data also stored in the
computer. Each group of instructions is called a computer program, and
each program normally processes a data file.? Thus two separate kinds
of input are entered into computer storage: (1) instructions to the com=
puter and (2) data that the computer will process by directions given in
the program of instructions.

Today these programs can be very complex. They can be written by
the computer installation personnel or a programming service bureau, or
they can be supplied by the computer manufacturer. The computer’s
own programs of operating instructions and procedures are usually
called the supervisor or nucleus. Thése programs ordinarily are supplied
by computer flanufacturers or software specialists.

Although industrywide agreement has not been reached about

Nine bits actually make up each byte, but the *parity”” or self-checking bitis
known only tothe computer. So programmers refer only to the 8 bits with which
they work. ’

2Such mathematical programs as creating random numbers or searching for
prime numbers are usually performed without input data, however.

8
INTRODUCTION
TO
PROGRAMMING

S

whether or not to include user application-programs, the term software
generally refers to professionally prepared stored programs of instruc-

tions.

_ Machine Language

" Instructions in the early stored programs were given in numeric
form. The programmer gave decimal number instructions that the com-
puter easily translated into usable binary form. An instruction usually

) consisted of two or three numeric parts, representing an arithmetic or

manipulating operation and one or two addresses in computer storage.
Irt this ‘‘machine language,”’ whxch was different for almost every kind
of computer, the number 4 might represent the instruction to add one
field to another field. The complete instruction could be:

4 105 207

This machine language instruction directs the computer to add (4) data
beginning at position 105 of computer storage to data beginning in
storage: position 207.)

The machine languages were a big step ‘above wired instructions,
but every tiny detail had to be programmed, the instructions were
difficult to remember, and the language varied with each computer.

Assembler Languages

Computers respond quickly to numeric commands, but human
beings have difficulty remembering the numeric symbols. This situation
was eased when the programmers writing instructions for the computer
substituted a letter for the numeric operation code in an instruction. For
instance, instead of

4 106 207
the instruction could be

A 105 207

- This was a big’ advance in programming because letters meaningful to

humans, such as A for add, are more easily remembered than num-
bers. For the computer, the translation from A to 4 to the binary digits
required only a little extra preliminary instructions.

Next came the realization that alphabétic characters can represent
more than just operation codes. Instead of being limited to the actual "
numeric storage addresses, programmers can use names or labels as
addresses in storage. Data fields can be referred to by such humanly

9 .
COMPILER
LANGUAGES

REVIEW
QUESTIONS

meaningful names as BONUS or PAY instead of being addressed bSr
their numeric locations in storage. For example, the instruction

A BONUS PAY ’

adds data from the two storage locatlons labeled BONUS and PAY.
In order to convert the alphabetic operation codes and data field
labels to their numeric addresses, the computer must already have
stored instructions on how to perform the conversions. A large program,
called an asseinbler, translates or converts the operation codes and

. labeled fields into the numeric commands required by the computer.

Assembly language instructions are in a 1-to-1 ratio with machine
language commands. This means that one assembly language command
translates into one machine language ‘command. Assembly languages

. were an important step in the development of computer programming,

but their detailed instructions and rigid requireménts demand great time
and care in both logic development and instruction writing.

18. What is a byte?
19. What is computer software?

- 20. Why do programmers rarely write in machme languages?

21. What is meant by the statement that machine and assembly lan-
guage commands have a 1-to-1 ratio?

Compiler Languages

After assembly (or symbolic progrmnmmg) languages were estab-
lished, programmers began to develop highly sophisticated sets of
commands for converting instructions. These conversion programs
usually are called‘compilers, although there are also generators, which
have certain technical differences. Like assemblers, compilers convert
or translate statements understood by humans into machine commands
that a computer can execute: Compiler language instructions, however,
are closer to the English language then to machine language. This is
largely possible because compiler language instructions are not on a
1-to-1 ratio with machine language commands. One compiler language
instruction generates several machine language commands, so that
there is a 1-to-several ratio. This also means that the programmer need
not worry about most of the internal computer movements since the
compnler is assummg those details. Therefore compiler language prog-
ramming is much easier and faster than assembler or machine language

programming.

programming
language
instructions

s N
1 machine -
FORTRAN D D program
compiler ;::::gn:’ ' execution

. Figure 4

10 .
INTRODUCTION
TO
PROGRAMMING

REVIEW
QUESTIONS

Because new tasks are constantly being found for c'omput'ers, and
because people differ about the best way todevelop computer languages,
many different compilers have been designed and are inuse today. Some
compiler languages are designed primarily for scientific use, others
mainly for business reports. Some languages are developed for general
computer usage; others are meant for limited, special computer tasks.
Almost all are written so that they.can be used on many different
computers, regardless of the specific machine language of the computer.

_ The most common, and therefore hest known, compiler languages are
"FORTRAN, COBOL, ALGOL, PL/, RPG (with a generator rather

than a compiler), APL., and BASIC. They all have elaborate sets of

.. instructions so that the programmer can easily utilize a computer’s

power and versatility.

. Nonmachine languages, partxcularly compller and generator lan-
guages, are often referred to as ‘‘source’’ languages. Source languages,
except for assembly languages, frequently are divided into two
categories: problem-oriented languages and procedure-oriented lan-
guages. In procedure-oriented languages, the programmer develops his
program according to the types of tasks that the computer is to perform.

~ For instance, the first instructions might describe all the forms of data to

be fed to the computer by punched cards, paper tape, magnetic tape, or
magnetlc disk, during any part of the program. These are all covered by
the general term ‘‘input.’’ The next instructions detail all calculations
that are to be performed on any of the data fields during any part of the
program. Last might be specifications for all data printed, punched, or
otherwise output by a device of the computer. All instructions are
grouped by procedural divisions of input, calculations, and output. The
compiler or generator translates these procedure-oriented instructions
into machine commands that are to be executed inthe computer’s actual
order of procedures. COBOL and RPG are both procedure-onented
languages.

In problem-oriented languages, such as FORTRAN, the program-

- mer arranges instructions basically in the order by which they are to be
- executed. An instruction for reading occurs when the program needs

input information. Calculations are described when the logic of the

 problem requires these calculations. Output instructions are given when

information is to be printed, punched; or otherwise output. Ordinarily
input, output, and calculation instructions are interspersed throughout
the entire problem-oriented language program.’

22. What is a source language"

23. What are the advantages of compiler languages over machine or
assembler languages?

24. What are the two basic categories of compller or generator lan-
guages? :

25. Name three compiler languages.

