GRAPH
I THMS

ALG

SHIMON EVEN

Q\

. >@
DX

COMPUTER SCIENGCE PRESS



THMS

L)

AL

SHMON EVEN

Technion Institute

Computer Science Press



Copyright © 1979 Computer Science Press, Inc.
Printed in the United States of America.

All rights reserved. No part of this work may be reproduced, transmitted, or stored in
any form or by any means, without the prior written consent of the Publisher.

Computer Science Press, Inc.
11 Taft Ct.
Rockville, Maryland 20850

4 S 6 8 84 83

Library of Congress Cataloging in Publication Data

Even, Shimon.
Graph algorithms.

(Computer software engineering series)
Includes bibliographies and index.
1. Graph theory. 2. Algorithms. 1. Title.
II.  Series.
QA166.E93 S5 79-17150
ISBN 0-914894-21-8
UK 0-273-08467-4



PREFACE

Graph theory has long become recognized as one of the more useful mathe-
matical subjects for the computer science student to master. The approach
which is natural in computer science is the algorithmic one; our interest is
not so much in existence proofs or enumeration techniques, as it is in find-
ing efficient algorithms for solving relevant problems, or alternatively
showing evidence that no such algorithm exists. Although algorithmic
graph theory was started by Euler, if not earlier, its development in the last
ten years has been dramatic and revolutionary. Much of the material of
Chapters 3, 5, 6, 8, 9 and 10 is less than ten years old.

This book is meant to be a textbook of an upper level undergraduate, or
graduate course. It is the result of my experience in teaching such a course
numerous times, since 1967, at Harvard, the Weizmann Institute of
Science, Tel Aviv University, University of California at Berkeley and the
Technion. There is more than enough material for a one semester course,
and I am sure that most teachers will have to omit parts of the book from
their course. If the course is for undergraduates, Chapters 1 to S provide
enough material, and even then the teacher may choose to omit a few sec-
tions, such as 2.6, 2.7, 3.3, 3.4. Chapter 7 consists of classical nonalgo-
rithmic studies of planar graphs, which are necessary in order to under-
stand the tests of planarity, described in Chapter 8; it may be assigned as
preparatory reading assignment. The mathematical background needed for
understanding Chapter 1 to 8 is some knowledge of set theory, com-
binatorics and algebra, which the computer science student usually masters
during his freshman year through a course on discrete mathematics and a
course on linear algebra. However, the student will also need to know a
little about data structures and programming techniques, or he may not
appreciate the algorithmic side or miss the complexity considerations. It is
my experience that after two courses in programming the students have the
necessary knowledge. However, in order to follow Chapters 9 and 10, addi-
tional background is necessary, namely, in theory of computation. Specifi-
cally, the student should know about Turing machines and Church’s
thesis.
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The book is self-contained. No reliance on previous knowledge is made
beyond the general background discussed above. No comments such as
““the rest of the proof is left to the reader” or “‘this is beyond the scope of
this book™ is ever made. Some unproved results are mentioned, with a ref-
erence, but not used later in the book.

At the end of each chapter there are a few problems which the teacher
can use for homework assignments. The teacher is advised to use them dis-
criminately, since some of them may be too hard for his students.

I would like to thank some of my past colleagues for joint work and the
influence they had on my work, and therefore on this book: 1. Cederbaum,
M. R. Garey, J. E. Hopcroft, R. M. Karp, A. Lempel, A. Pnueli, A.
Shamir and R. E. Tarjan. Also, I would like to thank some of my former
Ph.D. students for all I have learned from them: O. Kariv, A. Itai, Y.
Perl, M. Rodeh and Y. Shiloach. Finally, I would like to thank E.
Horowitz for his continuing encouragement.

S.E.

Technion, Haifa, Israel
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Chapter 1

PATHS IN GRAPHS

1.1 INTRODUCTION TO GRAPH THEORY

A graph G(V, E) is a structure which consists of a set of vertices V = {v,,
va2, ...} and a set of edges E = {e,, e, ...}; each edge e is incident to the
elements of an unordered pair of vertices {u, v} which are not necessarily dis-
tinct.

Unless otherwise stated, both V and E are assumed to be finite. In this
case we say that G is finite.

For example, consider the graph represented in Figure 1.1. Here V = {v,,
v2,v3, V4, vs}, E = {e;, 2, €3, €4, es}. The edge e, is incident to v, and v,,
which are called its endpoints. The edges e, and es have the same endpoints
and therefore are called parallel edges. Both endpoints of the edge e, are the
same; such an edge is called a self-loop.

The degree of a vertex v, d(v), is the number of times v is used as an end-
point of the edges. Clearly, a self-loop uses its endpoint twice. Thus, in our
example d(v4) = 1,d(v;) = 3and d(v,) = 4. Also, a vertex v whose degree is
zero is called isolated; in our example v; is isolated since d(v;) = 0.

Lemma 1.1: The number of vertices of odd degree in a finite graph is even.

Proof: Let | V| and |E| be the number of vertices and edges, respectively.
Then,

A4
Ldv)=2-|E|,

since each edge contributes two to the left hand side; one to the degree of
each of its two endpoints, if they are different, and two to the degree of its
endpoint if it is a self-loop. It follows that the number of odd degrees must be

even.
Q.E.D.
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Figure 1.1

The notation 1 — v means that the edge e has « and v as endpoints. In this
case we also say that e connects vertices u and v, and that » and v are adja-
cent.

A path is a sequence of edges e, e,, . .. such that:

(1) e;and e;+; have a common endpoint; _
(2) if e; is not a self-loop and is not the first or last edge then it shares one of
its endpoints with e;-, and the other withe;+,.

The exception specified in (2) is necessary to avoid the following situation:
Consider the graph represented in Figure 1.2.

S S U
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We do not like to call the sequence e, e, e; 2 path, and it is not, since the
only vertex, b, which is shared by ¢, and e is also the only vertex shared by e,
and e;. But we have no objection to calling e, e4, 3 a path. Also, the se-
quence ey, ez, €3, e is a path since e, and e, share b, e; and €2 shgre d, e;
and e; share b. It is convenient to describe a path as follows: vo—v; = v, - -+
Vi-1 — v;. Here the pathise;, ez, ..., e; and the endpoints shared are trans-
parent; vo is called the start and v, is called the end vertex. The length of the
pathis/.

A circuit is a path whose start and end vertices are the same.

A path is called simple if no vertex appears on it more than once. A
circuit is called simple if no vertex, other than the start-end vertex, ap-
pears more than once, and the start-end vertex does not appear elsewhere
in the circuit; however, u — v — u is not considered a simple circuit.

If for every two vertices u and v there exists a path whose start vertex is u
and whose end vertex is v then the graph is called connected.

A digraph (or directed graph) is defined similarly to a graph except that
the pair of endpoints of an edge is now ordered; the first endpoint is called
the start-vertex of the edge and the second (which may be the same) is called
its end-vertex. The edge (u = v) e is said to be directed from u to v. Edges
with the same start vertex and the same end vertex are called parallel, and if
u#v,uvandv 2 uthene, and e; areantiparallel. An edge u — u is called
a self-loop.

The outdegree, d ... (v), of a vertex v is the number of edges which have v as
their start-vertex; indegree, di, (v), is defined similarly. Clearly, for every
graph

.‘g dn(vi) = ig dou (vi).

A directed path is a sequence of edges ey, e;, ... such that the end vertex
of e;, is the start vertex of e,. A directed path is a directed circuit if the start
vertex of the path is the same as its end vertex. The notion of a directed path
or circuit being simple is defined similarly to that in the undirected case. A
digraph is said to be strongly connected if for every vertex u and every vertex
v there is a directed path from u to v; namely, its start-vertex is u and its end-
vertex is v.

1.2 COMPUTER REPRESENTATION OF GRAPHS

In order to understand the time and space complexities of graph
algorithms one needs to know how graphs are represented in the computer
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memory. In this section two of the most common methods of graph represen-
tation are briefly described.

Graphs and digraphs which have no parallel edges are called simple. In
cases of simple graphs, the specification of the two endpoints is sufficient to
specify the edge; in cases of digraph the specification of the start-vertex and
end-vertex is sufficient. Thus, we can represent a graph or digraph of n ver-
tices by an n X n matrix C, where C; = 1 if there is an edge connecting
vertex v; to v; and C; = 0, if not. Clearly, in the case of graphs C; = 1 im-
plies C; = 1; or in other words, C is symmetric. But in the case of di-
graphs, any n X n matrix of zeros and ones is possible. This matrix is
called the adjacency matrix.

Given the adjacency matrix of a graph, one can compute d(v;) by counting
the number of ones in the i-th row, except that a one on the main diagonal
contributes two to the count. For a digraph, the number of ones in the i row
is equal to d o (v;) and the number of ones in the i column is equal todi, (v;).

The adjacency matrix is not an efficient representation of the graph in case
the graph is sparse ; namely, the number of edges is significantly smaller than
nZ. In these cases the following representation, which also allows parallel
edges, is preferred.

For each of the vertices, the edges incident to it are listed. This incidence
list may simply be an array or may be a linked list. We may need a table
which tells us the location of the list for each vertex and a table which tells us
for each edge its two endpoints (or start-vertex and end-vertex, in case of a
digraph).

We can now trace a path starting from a vertex, by taking the first edge on
its incidence list, look up its other endpoint in the edge table, finding the in-
cidence list of this new vertex etc. This saves the time of scanning the row of
the matrix, looking for a one. However, the saving is real only if n is large and
the graph is sparse, for instead of using one bit per edge, we now use edge
names and auxiliary pointers necessary in our data structure. Clearly, the
space required is O(|E| + |V]), i.e., bounded by a constant times |E| +
|V|. Here we assume that the basic word length of our computer is large
enough to encode all edges and vertices. If this assumption is false then the
space required is O((|[E| + | V|) log (|[E| + | V|)*.

In practice, most graphs are sparse. Namely, the ratio (|E| + |V|)/| V|2
tends to zero as the size of the graphs increases. Therefore, we shall prefer
the use of incidence lists to that of adjacency matrices.

*The base of the log is unimportant (clearly greater than one), since this estimate is
only up to a constant multiplier.

2
z

e e
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The reader can find more about data structures and their uses in graph
theoretic algorithms in references 1 and 2.

1.3 EULER GRAPHS

An Euler path of a finite undirected graph G(V, E) is a path e, e2,..., €
such that every edge appears on it exactly once; thus, / = |E|. An undirected
graph which has an Euler path is called an Euler graph.

Theorem 1.1: A finite (undirected) connected finite graph is an Euler graph
if and only if exactly two vertices are of odd degree or all vertices are of even
degree. In the latter case, every Euler path of the graph is a circuit, and in
the former case, none is.

As an immediate conclusion of Theorem 1.1 we observe that none of the
graphs in Figure 1.3 is an Euler graph, because both have four vertices of
odd degree. The graph shown in Figure 1.3(a) is the famous Kénigsberg
bridge problem solved by Euler in 1736. The graph shown in Figure 1.3(b) is
a common misleading puzzle of the type “‘draw without lifting your pen from
the paper’.

Proof: It is clear that if a graph has an Euler path which is not a circuit, then
the start vertex and the end vertex of the path are of odd degree, while all the
other vertices are of even degree. Also, if a graph has a Euler circuit, then all
vertices are of even degree.

@) Figure 1.3 )
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Assume now that G is a finite graph with exactly two vertices of odd
degree, a and b. We shall described now an algorithm for finding a Euler
path from a to b. Starting from a we choose any edge adjacent to it (an edge
of which a is an endpoint) and trace it (go to its other endpoint). Upon enter-
ing a vertex we search for an unused incident edge. If the vertex is neither a
nor b, each time we pass through it we use up two of its incident edges. The
degree of the vertex is even. Thus, the number of unused incident edges after
leaving it is even. (Here again, a self-loop is counted twice.) Therefore, upon
entering it there is at least one unused incident edge to leave by. Also, by a
similar argument, whenever we reenter a we have an unused edge to leave by.
It follows that the only place this process can stop is in b. So far we have
found a path which starts in a, ends in b, and the number of unused edges in-
cident to any vertex is even. Since the graph is connected, there must be at
least one unused edge which is incident to one of the vertices on the existing
path from a to b. Starting a trail from this vertex on unused edges, the only
vertex in which this process can end (because no continuation can be found)
is the vertex in which it started. Thus, we have found a circuit of edges which
were not used before, and in which each edge is used at most once: it starts
and ends in a vertex visited in the previous path. It is easy to change our path
from a to b to include this detour. We continue to add such detours to our
path as long as not all edges are in it.

The case of all vertices of even degrees is similar. The only difference is
that we start the initial tour at any vertex, and this tour must stop at the same
vertex. This initial circuit is amended as before, until all edges are included.

Q.E.D.

In the case of digraphs, a directed Euler path is a directed path in which
every edge appears exactly once. A directed Euler circuit is defined similarly.
Also a digraph is called Euler if it has a directed Euler path (or circuit).

The underlying (undirected) graph of a digraph is the graph resulting from
the digraph if the direction of the edges is ignored. Thus, the underlying
graph of the digraph shown in Figure 1.4(a) is shown in Figure 1.4(b).

Theorem 1.2: A finite digraph is an Euler digraph if any only if its underly-
ing graph is connected and one of the following two conditions holds:

1. There is one vertex a such that d.(a) = di,(a) + 1 and another vertex b
such that d..(b) + 1 = di.(b), while for all other vertices v, dou(v) = din(v).
2. For all vertices v, dou(v) = din(v).

If 1 holds then every directed Euler path starts in a and ends in b. If 2 holds
then every directed Euler path is a directed Euler circuit.
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Figure 1.4

The proof of the theorem is along the same lines as the proof of Theorem 1.1,
and will not be repeated here.

Let us make now a few comments about the complexity of the algorithm
for finding an Euler path, as described in the proof of Theorem 1.1. Our pur-
posed is to show that the time complexity of the algorithm is O(1E|); namely,
there exists a constant K such that the time it takes to find an Euler path is
bounded by K- [E|.

In the implementation, we use the following data structures:

—t

. Incidence lists which describe the graph.
. A doubly-linked list P describing the path. Initially this list is empty.
. A vertex table, specifying for each vertex v the following data:

(a) A mark which tells whether v appears already on the path. Initially all
vertices are marked ‘‘unvisited”.

(b) A pointer N(v), to the next edge on the incidence list, which is the first
not to have been traced from v before. Initially N(v) points to the first
edge on v’s incidence list.

(c) A pointer E(v) to an edge on the path which has been traced from v.
Initially E(v) is “‘undefined”.

4. An edge table which specified for each edge its two endpoints and whether
it has been used. Initially, all edges are marked “unused”.

S. Alist L of vertices all of which have been visited. Each vertex enters this

list at most once.

W N

First let us describe a subroutine TRACE(d, P), where d is a vertex and P
is a doubly linked list, initially empty, for storage of a traced path. The trac-
ing starts in d and ends when the path, stored in P, cannot be extended.

TRACE(d, P).
Nv—d
(2) If v is “‘unvisited”, put it in L and mark it “visited”.
(3) IfN(v) is “‘used” but is not last on v’s incidence list then have N(v) point
to the next edge and repeat (3).
(4) If N(v) is “‘used” and it is the last edge on v's incidence list then stop.



8 Paths In Graphs

(5) e = N(v)
(6) Add e to the end of P.
(7) K E(v) is “‘undefined” then E(v) is made to point to the occurrence of e
in P.
(8) Mark e “used”.
(9) Use the edge table to find the other endpoint u of e.
(10) v — u and go to (2).

The algorithm is now as follows:

(1)d —a

(2) TRACE(d, P). [Comment: The subroutine finds a path from a to b.]

(3) If L is empty, stop.

(4) Let u be in L. Remove u from L.

(5) Start a new doubly linked list of edges, P’, which is initially empty.
[Comment: P’ is to contain the detour from u.]

(6) TRACE(u, P')

(7) Incorporate P’ into P at E(u). [Comment: This joins the path and the
detour into one, possibly longer path. (The detour may be empty.) Since
the edge E(u) starts from u, the detour is incorporated in a correct
place.]

(8) Go to (3).

It is not hard to see that both the time and space complexity of this
algorithm is O(IE1).
1.4 DE BRUIIN SEQUENCES

LetL = {0, 1, ..., 0 — 1} be an alphabet of ¢ letters. Clearly there are o"
different words of length n over L. A de Bruijn sequence* is a (circular) se-
quence aoa; - - - a—; over L such that for every word w of length n over £
there exists a unique i such that

AAi+y *** Aitn—1 = W,

where the computation of the indices is modulo L. Clearly if the sequence
satisfies this condition, the L = ¢”. The most important case is that of ¢ = 2.

% Sometimes they are called maximum-length shift register sequences.

T
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Binary de Bruijn sequences are of great importance in coding theory and are
implemented by shift registers. (See Golomb's book [3] on the subject.) The
interested reader can find more information on de Bruijn sequences in
references 4 and 5. The only problem we shall discuss here is the existence of
de Bruijn sequences for every ¢ = 2 and every n.

Let us describe a digraph G, .(V, E) which has the following structure:

1. Vis the set of all "' words of length n — 1 over L.

2. E is the set of all ¢” words of length n over L.

3. The edge b.b, - - - b, starts at vertex b\b; - - - b, and ends at vertex bb;
.o b,

The graphs G,3, G4, and G;, are shown in Figures 1.5, 1.6 and 1.7
respectively.

These graphs are sometimes called de Bruijn diagrams, or Good's
diagrams, or shift register state diagrams. The structure of the graphs is such
that the word w; can follow the word w, in a de Bruijn sequence only if the
edge w;, starts at the vertex in which w; ends. Also it is clear that if we find a
directed Euler circuit (a directed circuit which uses each of the graph’s edges
exactly once) of G, then we also have a de Bruijn sequence. For example,
consider the directed Euler circuit of G, ; (Figure 1.5) consisting of the follow-
ing sequence of edges:

000, 001, 011, 111, 110, 101, 010, 100.

The implied de Bruijn sequence, 00011101, follows by reading the first letter
of each word in the circuit. Thus, the question of existence of de Bruijn se-
quences is equivalent to that of the existence of direct Euler circuits in the
corresponding de Bruijn diagram.

Theorem 1.3: For every positive integers ¢ and n, G,,, has a directed Euler
circuit.

Proof: We wish to use Theorem 1.2 to prove our theorem. First we have to
show that the underlying undirected graph is connected. In fact, we shall
show that G, is strongly connected. Let bib; --- b,_, and cic; * -+ co—; be
any two vertices; the directed path b]bz ces byoiey, bzb3 s b,._lclcz, ey
ba—1c1c2 - -+ €a—y leads from the first to the second. Next, we have to show
that do(v) = d,(v) for each vertex v. The vertex b\b; - - - b, is entered by



