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Preface

Electronic systems today are based more upon integrated circuits than on discrete
elements. Nevertheless, discrete transistors and diodes are still widely used, es-
pecially in high-power applications. Moreover, to make effective use of the ubig-
uitous IC building blocks, it is necessary to have some idea of how their internal,
discrete elements work. We have, thercfore, two reasons to study the electronics
of discrete elements—first, to allow us to use discrete elements as such, and second,
-to understand how they function in integrated circuits.

Necessary as such a micro approach may be, it is not sufficient. We must also
work on a macro level to understand the operation of larger scale systems whose
elements are integrated circuits. In this book I have tried to give adequate treatment
to both points of view.

Emphasis is placed on analog circuits. However, since we seem to be living
in a world that is becoming increasingly digital, I have devoted three chapters to
topics from that area. Chapter 2 deals with the internal structure and operation of
basic logic gates. Chatper 11 treats memory devices—from basic flip-flops to RAMs
and ROMs. Chapter 12 is devoted largely to those devices that operate at the
analog-digital interface—analog comparators, D/A and A/D converters. In the
discussion of digital devices I have chosen not to introduce such topics as Boolean
algebra or Karnaugh maps; these matters are better left to books that concentrate
on digital circuits.

You will find certain departures from what is usually found in a book of this
sort. The first of these is the treatment of feedback, which stresses the asymptotic
gain formula and Blackman'’s impedance formula. This approach obviates the trou-
blesome and often confusing classification of input and output circuits as shunt- or
series-connected. For those who want to connect the two approaches, conventional
feedback-circuit classification is reviewed in Appendix A.

xiii



Other departures from standard textbook treatments are the discussion of
the differential amplifier and its related current-source circuitry and the detailed
discussion of direct-coupled structures such as those used in the internal configu-
ration of operational amplifiers. The applications of operational amplifiers that are
considered include inductance and capacitance simulation, band-pass and notch
filters, and power supply regulators. ’

Listings of eleven computer programs are given at appropriate points in the
text. These allow computation of such things as the gain-bandwidth product for a
common-emitter amplifier, gain and phase crossover points when DC gain and the
real poles of an amplifier are given, and pole locations for low-pass and band-pass
Butterworth amplifiers. The programs are written in BASIC and are suitable fo
use on a personal computer. '

The book is intended for use by fourth-year students in electrical engineering
technology. It may also be useful for third-year electrical engineering students. The
chief distinction between students in these two programs is the higher level of
mathematical proficiency expected of those in engineering. However, in either
curriculum the study of electronic circuits requires very little mathematical so-
phistication. For those students who are interested, I have tried to provide adequate
mathematical explanations and derivations where these are appropriate and to do
$0 in a direct manner. The instructor may, of course, elect to omit.some of the
more abstract derivations and proceed directly to the application of the principles
involved.

For technology students, there is more material here than can be covered in
one semester. If the students come to the course well prepared, the instructor might
select Chaps. 3, 4, 5, 6, 7, 11, and 12. Another possible selection is Chaps. 1, 3,
4,7,9, and 10.

Every section includes worked-out, numerical examples. Problems at the ends
of chapters rarely require derivations but can usually be solved using only simple
arithmetic in a two- or three-step logical process. Plug-in problems have been
avoided and the few that are included serve only to illustrate the magnitude of the
quantities involved. An Instructor’s Manual is available.

I am pleased to acknowledge the helpful suggestions of my colleagues, par-
ticularly Solomon Rosenstark, who brought to my attention the utility of the asymp-
totic gain formula and Blackman’s equation. Discussions with Joseph Frank helped
to clarify a number of ideas. '

Thanks are also due to Nancy Bogen who provided encouragement and sup-
port during early phases of the writing.

—Ervine M. Rips
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CHAPTER 1

Review of Basic Principles
of Semiconductor Devices

1-1 JUNCTION TRANSISTOR OPERATION

A fundamental element of many semiconductor devices is the pn junction. Such
junctions are usually formed by diffusing an n-type doping material through some
depth of a p-type base material. _

We can gain some understanding of the action of pn junctions by recalling
that the p region contains a certain population of mobile holes, whereas the n
region contains mobile electrons. At the junction, some holes diffuse into the n
material and some electrons diffuse into the p region. Bear in mind that the holes
were produced by p-doping elements, whose nuclei have one less positive charge
than the surrounding silicon (or germanium) nuclei. Likewise, the electrons orig-
inated from n-doping elements, whose nuclei have one more positive charge than
the neighboring silicon nuclei. When the mobile electrons and holes diffuse across
the junction, they leave behind these nuclei, which— of course—are locked, im-
movable, in the crystal structure. Thus the region on the p side is deficient in
positive charge, but the region on the n side has excess positive charge. The resulting
situation is illustrated in Fig. 1-1.

A depletion region is thus formed in the immediate vicinity of the junction,
which results in a built-in potential. If we connect an external battery-resistor circuit
to the pn terminals, we have the situation shown in Fig. 1-2.

Looking at the circuit analogs, we see that in (a) and (b), the external battery
and the built-in potential are aiding, while in (c) and (d), they are in opposition.
From this we conclude that if the external source is polarized to direct current into

§850149
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@ @ Built-in junction potential
is like that of a small battery.
Fig. 1-1 pn junction showing excess
—-l ““— positive and negative charges resulting
Depletion region from stripped nuclei.

the p side of the junction, current can be made to flow easily. But if we attempt
to direct current into the n side, current flows only with difficulty.

Thus a pn junction has rectifying properties. The current direction from p to
n is called the forward direction. The direction from n to p is called the reverse
direction. The relation between p and n regions and the conventional circuit symbol
for a diode is illustrated in Fig. 1-3.

If we connect a semiconductor diode as shown in Fig. 1-4(a) and vary the
voltage V applied across it, the current / will behave as shown in the curve of Fig.
1-4(b). C

The equation that relates [ to V' is

1= L(e?"T — 1) (1-1)

where g and k are constants, T is the junction temperature in degrees Kelvin, and
I; 1s a quantity called the reverse saturation current. For V positive (forward) and
equal to only a few tenths of a vote, I will be positive and will increase rapidly.
But when V is negative (reverse), the term e?"*7 becomes negligible, so that [ is
approximately — 7.

e

R R
+yp. - +] -
H— H—
E £
(a) Actual circuit (b) Analog of circuit (a)
,b n p n
M
< <t
R3 A2
Nk -1, +
e L—4 | |F—J
E E
Fig. I-2 An external battery-resistor
{c) External battery reversed. {d) Analog of circuit {c)  circuit connected to the pn junction.
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p n
™ Fig. 1-3 Diode symbols.

Reverse Forward

Variable

voltage
source

Fig. 1-4 Diode volt-ampere character-
(a) (b) istics.

Junction transistors are formed by successive diffusions of n and p doping
materials to yield structures like those shown in Fig. 1-5. Since both types of material
are used to form these transistors, they are often called bipolar junction transistors
or BITs. :

. To understand transistor action, we use the schematic structure shown in Fig.
1-6. The batteries shown in Fig. 1-6 are meant to suggest bias polarities for the
two internal junctions. We can see that the left-hand np junction is forward biased,
whereas the pn junction on the right is reverse biased. Thus current flows readily
through the left-hand junction, in the direction shown. This indicates that electrons
are injected from the left-hand n body through the junction into the p region.
These electrons diffuse through the p material until they encounter the strong
electric field that exists at the reverse-biased junction on the right. At that point
they are pulled through the junction, exiting to the nght Thus a current must enter
the right-hand » body as shown.

Emitter  Base Emitter Base Collector

(1 111

U] [W, U]

P Substrate n
Collector
{a) A pnp transistor (b} An npn transistor

Fig. 1-5 Transistor structures.

Sec. 11 Junction Transistor Operation . 3
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".[ = Fig. 1-6 Schematic traasistor structure

+l T showing nonmal directions of operating
current.

Not all the electrons injected at the left junction arrive at the one on the right
because a certain number of them recombine with the hoies that are present in the
p region. (Remember, a hole is the absence of an electron.) For this reason only
a fraction of electrons emitted at the left are collected at the right. (You will recall
that the transistor structure consists of an emitter, a base, and a collector.) Thus
we see that the collector current is related to the emitter current by the equation

Ic = (IIE‘ (1'2)

By Kirchhoff’s current law, we can see that the current into the base must
be given by

Ip =1~ Ic= (1~ o)l, (1-3)

Typical values of a are 0.98 and 0.99. This number varies from one device to
another.

1-2 JUNCTION TRANSISTOR BIASING

Before considering circuits that amplify or control signals, we first have to establish
DC operating conditions. Perhaps the best way to review the procedure for domg
$O 1s by means of an example.

Example 1.1

A typical npn transistor circuit is shown in Fig. 1-7. (Note that the arrow on the emitter
symboi points in the direction of normal-operating, emitter-current flow.) The problem
here is to determine R, so that I will be 1 mA. To solve this problem we need to
know how much voltage will appear across the base-emitter junction. One way to find
out would be to include in our equations a solution for V. taken from Eq. (1-1).

But to do so would be needlessly complicated and not very useful. Instead, we simply
make use of a fact, based on many observations, that in normal, forward bias, the
voltage Vg for a silicon transistor is usually about 0.7 V.

For I = 1 mA,

= (1 - a) x ImA

a=0.99

Fig. 1-7 Transistor circuit.

4 Review of Basic Principles of Semiconductor Devices Chap. 1



or
Is = (1 —099) 1073 = 10 pA
To find R, we observe that
Vee = Ve + Ve
Hence Vg,, the voltage across R, must be
Veg = 10 = 0.7 =93V

Then Ry = Vigg/ly, or Ry = 9.3/107° = 9.3 x 10° = 930 KQ.
Sometimes, when V. is large compared to V., we can neglect V,,. altogether
with little effect on the results.

It is interesting to observe that, in Example 1-1, the voltage from collector
to emitter is Vr = Ve — IcRc. Since I = Iz we can calculate Vg quite simply.

" Vee=10-103x3x 10 =10-3=7V

It is convenient to define a parameter that relates base current to collector
current directly in dealing with circuits like the one. in Fig. 1-7. Since I, =
(1 — w)lgand Ic = alg, then

Iy = (%E)IC or IC=1 falg
We can define the quantity A, sometimes taken as B, to be
heg = B = 7—— (1-4)
Then we can write . .
Ic = hpelyg (1-5)

) A word of caution: Eq. (1-5) takes no account of the presence of a reverse-
 bias current Iz, through the collector-base junction. When the transistor is con-
nected as shown in Fig. 1-7, this current is magnified by a factor 1 + h,.. The

correct equation should therefore be -
—
Ic = heelp + (1 + heg)lcpo _

To make matters even more complicated, I40 is temperature sensitive. However,
its value for silicon transistors is usually extremely small. Consequently, since our
purpose here is only to review a few basic prirdciples, we shall ignore it. You are
advised to review material from previous courses that deal with this matter.

A commonly used biasing circuit is shown in Fig. 1-8. We analyze it in Example
1.2.

- Example 1.2

The problem is to find the collector current and the collector-emitter voltage.
We begin by assuming that the base current will be small compared to the current
through R, and R;, which are connecte:} in series across Vee. We shall check this

Sec. 1-2  Junction Transistor Cperaticn ' 5
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Fig. 1-8 Circuit example.

assumption later. The voltage at the base terminal is, by the voltage-divider rule, 20
X (20 KQ)/(20 KQ + 47 KQ) = 20 x 20/67 = 6 V. Since the base-emitter voltage
Ve is 0.7 V, the emitter voltage is 6 — 0.7 = 5.3 V. This must be the voltage across
Rg, so that I, = 5.3/1.8 K = 294 mA = 3 mA. The voltage drop across R, must
therefore be very nearly 3 mA x 3.3K = 9.9 V. Tofind the collector-emitter voltage,
we use Kirchhoff’s voltage law and write

WVee = Vac + Vee + Ve
or
20 = 9.9 + V. + 5.3.
Ve =20 - 99 — 53 = 48V

What about our assumption that I, is small compared to the current through R, and
R,? First of all,

Ip 3 x 1073
= = =~ (.06 x 10-3
=17 hex 51 06 x 10
= 60 pA g

The current through R, and R, is 20/(20KQ + 47 K)) = 20/67 mA, or about 0.3 mA
= 300 pA. Thus the assumption appears to be of doubtful validity since the base
current is 20% of the current through the voltage divider. Ordinarily, we consider

that our assumption is reasonable when I, is no more than 10% of the voltage-divider
current. '

What can be done about this situation? To answer this question, we begin by
calculating the resistance that is seen looking into the base terminal. The current into
the base is, of course, I,. The voltage due 1o R, is

I:Re = (1 + hpp)lsR,
Then the DC resistance looking into the base must be given by

_ base-to-ground voltage (1 + h MR,

R, =R, =
ase-to- d Bin :
Asecto-groun current iato base 1,

or

Rp, = (1 + her)R,

Review of Basic Principles of Semiconductor Devices Chap. 1
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