MICROPROCESSOR
PROGRAMMING
and

SOFTWARE
DEVELOPMENT

F.G. DUNCAN

2y Wi

MICROPROCESSOR

PROGRAMMING
and |
 SOFTWARE

DEVELOPMENT

F.G.DUNC

University of Bristol, England

4 . _ o ,

ENGLEWOOD CLIFFS, NEW JERSEY LONDON NEW DELHI

SINGAPORE SYDNEY TOKYO TORONTO WELLINGTON .
I it s

5506128

“To T. A. M. and to S. W. D.

Library of Congress Cataloging in Publication Data

Duncan, Fraser G., 1932~
Microprocessor progtamming and software
development. ' .
Bibliography: p.
Includes index. /
1. Microprocessors—Programming. 1. Title. /
QA76.6.D84 001.6’42 7827429 Y . .y
* ISBN 0-13-581405-7 ' v)

British Library Cataloguing in Publication Data
Duncan, Fraser George ,
Microprocessor programming and software
development. :
1. Microprocessors-Pfogramming
I. Title '
001.6'42 - QA76.6
ISBN 0-13-581405-7

‘© 1979 by PRENTICE-HALL INTERNATIONAL INC., LONDON

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any

.means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of Prentice-Hall International, Inc,
London. ' - '

" ISBN 0-13-581405-7

PRENTICE-HALL INTERNATIONAL, INC., LONDON
PRENTICE-HALL OF AUSTRALIA PTY. LTD., SYDNEY
PRENTICE-HALL OF CANARA, LTD., TORONTO
PRENTICE-HALL OF INDIA PRIVATE LIMITED, NEW DELHI
PRENTICE-HALL» OF JAPAN, INC., TOKYO

PRENTICE-HALL OF SOUTHEAST ASIA PTE., LTD., SINGAPORE
PRENTICE-HALL, INC., ENGLEWOOD CLIFFS, NEW JERSEY
WHITEHALL BOOKS LIMITED, WELLINGTON, NEW ZEALAND

A\

-

Type set in Monotype Times Roman and Univers
by HBM Typesetting Ltd., Chorley, Lancs.
‘Printed and Bound in Great Britain

by A. Wheaton & Co. Ltd., Exeter

79 80 81 82 83 5 4 3 21

Preface

Microprocessor programming and software development is intended to provide new
users of microprocessors with an introduction to programming and to the basic design
of software. More precisely, it is meant as a teaching text and reference document
for those newcomers to microprocessors and to programming who wish to understand
fully both the programs they will write and the programs they will use. -

The book originated in its author’s own attempts to come to terms with a
number of different microprocessors. It has subsequently derived a great deal from
extensive discussions with students and colleagues facing the same task, and from
the experience of many courses and seminars involving audiences of a wide variety
of background and interest. A

This book is offered in the first place as a text for students specializing in
computer science in universities, polytechnics and similar institutions. It assumes no
previous knowledge of programming, and its references to matters of logic design
imply no more advanced experience of that.subject than is normally acquired by such
students in their first or second year. In the University of Bristol the material was
first introduced to third-year students; by the time microprocessors have een
established as a teaching medium throughout the undergraduate syllabus it will be
a first-year text.

Maturestudents of many different backgrounds have worked through the mae. ial
of the book, some by attending evening or vacation courses, others by unaided private
study. Their very valuable criticisms and suggestions have been taken into account.
It is hoped, therefore, that the book will be of use to other prospective users of
microprocessors who, already competent in their own fields, require an introduction
to programming that will give them a sound basis for their own future work and the
foundation of a critical understanding of the work of others. Such a reader will find
the book self-contained as regards its principal subject matter; but if he finds difficulty
in reading the first chapter he will no doubt consult an elémentary text on logic design.
Having done so he will be in a better position to understand the structure of a
microprocessor system and to meet the task of using a microprocessor in a context
of his own specification.

5506128

Xi

xii

PREFACE

The approach taken by the ‘book is practical, and, while much of the material
is more generally applicable, all detailed discussion is based on four widely used
processors, the Motorola 6800, Intel 8080 and 8085, and Zilog Z80.* A self-contained

software package for the 8080 is given as an integral part of the work, and provides

material for illustration throughout.

Chapter 1 gives a brief outline sketch of the ‘hardware’ aspects of mlcroprocessors
and microprocessor systems from a programmer’s point of view.

In Chapter 2 the machine instructions and their effects are described. and
discussed in detail. A common notation for the instruction sets is developed in ‘a
manner intended to enable the reader to pass easily from one machine to another.
This notation differs radically from the sets of so-called ‘mnemonics’ constituting the
‘assembly languages’ designed by.the manufacturers; its advantages, however, are
considerable, and particularly to the user who does not wish to be restricted to oné
machine. The application of certain types of instructions, such as those for addition
and subtraction, is discussed at length; the reader who feels that this discussion is
more than his anticipated needs demand should omit it from hls first reading and
treat it as reference material for possible later use.

 Chapter 3 is given over to tabulations in common form of the instruction sets
of the four microprocessors, 6800, 8080, 8085 and Z80, together with an alphabetical
‘dictionary’ of the written forms, introduced in Chapter 2, of the instructions of the
combined set. This superficially forbidding mass of reference material will repay study;
at a later stage it will be found that a copy of one or other of the tables will be a
convenient and usually sufficierit reference during program-wrmng

* Programming is introduced in Chapter 4 through a series of graded examples.
The first of these provide a basis for the simple input, output and processing of
characters and numbers; later ones correspond to subroutines of a software package,

which are given later in full.

Chapter 5 consists of a'set of more or less disjoint sections on topics whose only
common feature is that they are not primarily concerned with the processing of
numerical quantities. In some, such as that on sorting, a fairly detailed treatment of
at least one practical example has been possible; but in others, such as that on files
and records, anything more than a brief description of the topic would havc required
considerably more space than was available.

In Chapter 6 a set of basic software aids to programming is descnbcd and users’
instructions for such a set—that given in the software package—are detailed. The
chapter ends with discussion of possibilities for enhancing the programmer’s power
of expression through further software.

Chapter 7 is devoted to a necessarily subjective account of the historical context-
of microprocessor software, brief references to available packages, and an inconclusive
discussion of possibilities for the future. A reader who, in addition to working through
the programming exercises of this book, has also used one or other of the available . -
high-level language compilers should be in a posmon to involve himself in"this

1The extent to which the material applies to another processor will depend of course, on how
different it is from these four. While, no doubt, some of it applies to processors of word-lengths
other than 8 bits, it is unlikely that very much of it can usefully be applied to ’bxt-shce devices.

PREFACE - e . Xiii

discussion and perhaps carry it forward to the point of contributing his own ideas to
the design and implementation of new lariguages or other, better, means of expression.

Chapter 8 contains the compiete text, with detailed commentary, of the software
package which has already served as a source of illustrations of programming tech-
niques, instructions for the use of which were given in Chapter 6. This package
oocupymg 6K bytes of PROM, consists of a monitor; a PROM-programmmg
program, an assembler and disassembler, and a set of arithmetic (including 32-bit
floating point) subroutines. The assembler requires at least 1K, and, preferably, 2K,
bytes'of RAM for working space. However, as described in Chapter 8, parts of the
package can be used with much less PROM and RAM. This software has been in use ~
for some time, and it will, it is hoped, be useful to the reader. It is, of course, im-
perfect, and unlikely to satisfy the critical user for long. The reader who has discovered
for himself its usefulness, its limitations and its shortcomings, and who has studied it
carefully and observed its structure, its scars, flaws and blemishes, should be well on
the way to designing and implementing good software and other programs of his
own. : . ‘
Programming is a practical skill which can be acquired only by practice on
actual machines. Clearly, a reader who has an 8080 or 8085 or Z80 system on which
the software of Chapter 8 will run will derive much more from this book than will
another who has only some other machine. But the latter will be infinitely better off
than a third reader who has no access to any machine. All three readers would benefit
by getting together to learn to program both of their machines. It is well known that
a bilingual programmer is far better able to adapt to new machines and languages
than a programmer who can express himself in only one way. A beginner in the
fortunate position of being able to buy his own equipment will learn far more from
two different small systems than from one larger one.

‘There is very little, if anything, in this book about cross-assemblers, cross-
compilers, debugging aids with elaborate diagnostics or development systems. Such

" things are distractions to the beginner and symptoms of muddle and despair when

.

used by an experienced programmer. That of course is a provocative over-simplifi- -
cation. The truth is that the system on which a program is to run is the right system
on which to develop that program; that, while mistakes are inevitable, muddle and
needless complication are not; and that simple, well-designed and easily understood
tools, in programming as well as in any other constructional activity, are much to be
preferred to elaborate, complicated and unpredictable mechanisms.

The inevitable mistakes in this book, and any avoidable muddle and comphca-
tion, are the fault of the author, and all expressed opinions are his alone. At the same
time, credit for whatever is worthwhile in it belongs ultimately to the many colleagues,
teachers, students and friends who, wittingly and unwittingly, have made it possible
and who, because of their number, have to be acknowledged collectively. With
specific regard to the book, however, thanks are due to Professor M. H. Rogers,
Head of the Department of Mathematics, University of Bristol, for initially suggesting
and continually supporting the work with microprocessors,?2 and for repeated re-
minders that the work ought to be documented; to Professor C. A. R. Hoare of

~ 3Here, and elsewhere, an ambiguity is to be understood in at least two senses.

Xiv

PREFACE

Oxford University, for much encouragement and constructive criticism;- to Messrs
H. Hirschberg, R. Decent and their colleagues at Prentice-Hall International for
necessary stimulation and practical expertise; to the reviewers for pointing out that
a book is meant to be read by readers; to Professor D. Zissos, Professor J. Miihl-
bacher, and Messrs K. R. Brooks, D. Harvey, G. Pritt, and M. G. Wilkins for their
many varied and valued contributions; to Mesdames R. Martin, A. Plumley, A.
Warren-Cox and Miss R. Wilkins for their typing; to those microprocessor companies

- whose products have brought pleasure back into programming; and last, but by no

means least, to my wife and (on the whole) our three children, who have suffered
much over the past year and.yet have continued to provide agreeable conditions for
working with microprocessors and even more agreeable means of escape from them.

POSTSCRIPT (June 1979)

While this book has been in production, the software of Chapter 8 has been transcribed
for an 8085 system with PROM (4 x 2716) in 0000-1FFF and RAM in 2000 onwards.
Some of the improvements suggested in 8.7 have been effected. The assembler with
slightly better facilities is in one 2K PROM (1800-1FFF); the monitor with new line-
printer commands, the PROM programmer programs, and disassembler are in
another (0000-07FF); the arithmetic and input—output subroutines are in a third
(0800-OFFF); while the fourth (1000-17FF) has cassette and highér-level software
under development. Users of this system should note the following transpositions:

8080 8085 8080 8085
.0360, 03C0 0371, 03C9 OD6F-0D7F 086F-087F
07E6-O7FF 0886-089F ODCA-OFFF 08CA-0AFF
0BEO-OBFF 08A0-08BF , 2400-27FF 0CO00-OFFF
O0CF1-0CF7 08C1-08C7 - . 2B80-2BFF 0B80-0BFF

This postscript provides a welcome opportunity to express thanks to Messrs A. Whittle,
P. Woodward, and P.. Day for their persistent care with the text and illustrations.

F.G.D.

FRONTISPIECE Xy

The 8080 system described on pages 210 and 211. The PROM programmer is
in the foreground; the power supply unit is on the left,

A closer view of the modified Intel SDK board with 6K of PROM and 2K of
' RAM.

Contents

.PREFACE xi
FRONTISPIECE XV

-1 Microprocessors and microprocessor systems 1 .

1.1 BASIC IDEAS J_

1.2 INTERNAL ORGANIZATION OF A MICROPROCESSOR 9
1.2.1 Power supplies 9
1.22 Clock 9

" 1.2.3 Timing and control unit 9

1.2.4 Instruction register and decoder 11
1.2.5 ' Arithmetic-logic unit (ALU) 11
1.2.6 Condition flags 12
1.2.7 Accumulators. 12
'1.28 Program counter 12
1.2.9 Stack pointer 12 :
1.2.10 Other addressing registers 13

1.3 THESTORE' 13
1.3.1 Main store and secondary store 13
132 Semiconductor storage 13
1.3.2.1' ROM (‘read only memory’) 14 '
1.3.22 PROM (‘programmable read only memory’) 14 -
. 1.32.3 .RAM (‘random access memory’) 15
1,33 Addl suffering and decoding 16

1.4 PERIPHERAL Dmbu 18
1.4.1 Interfaces 1‘8

vi

2

CONTENTS

Instructions 19

2.1

24

BASIC IDEAS* 19
2.2 REPRESENTATION OF INSTRUCTIONS 20

2.3.1
232
23.3
2.3.4
2.3.5
2.3.6
2.3.9

; 2 3 GENERAL NOTATIONS 23

The bytes of an instruction 23

Registers 23

Assignment (copying or transfer of information) 23
Interchange 24

Values 24

Addresses and storage locations 25

Condition flags 28

ARITHMETIC AND LOGICAL OPERATIONS 28

- 2.4.1

24.2
243

244

2.4.5

2.4.6
2.47
248

249

Meanings of a byte 28

Signed and unsigned values 29

Addition 30

2.4.3.1 "Addition (single-length) 30

2.4.3.2° Addition (double-length) 32

2.4.3.3 Addition (multiple-length) 33

2.4.3.4 Addition of numbers of unequal length 34
Inversion and negation 34

Subtraction” 35

2.4.5.1 Subtraction (single-length) 35

2.4.5.2 Subtraction (double-length) 36

2.4.53 Subtraction (multiple-length) 37

2.4.5.4 Subtraction of numbers of unequal length 37
Logical (Boolean) operauons 37

“Test’ and ‘compare’ operations 38

*Shift’ and ‘rotate’ operations 41

1 Arithmetic shift up 41

2 Arithmetic shift down 41

3 ‘Logical’ shift right 42

4 Cyclic shift (rotation) left 42

5 Cyclic shift (rotation) right 42
6 Nine-bit cyclic shift left 42

7 Nine-bit cyclic shift right 43

8 Nibble shift left (Z80 only) 43
9 Nibble shift right (Z80 only) 43

Availability 44

Other arithmetic and logical operations 44
2.4.9.1 Increment and decrement 44
2.4.9.2 Decimal adjustment 45

2.5 STACK OPERATIONS 46 -
2.6 Jumps 48
2.7 SUBROUTINES 48

[2Y /M N

CONTENTS

2.8 INPUT-OUTPUT 50
@ ‘Bit by bit® 51
(i) ‘Serial to parallel” 52
(iii) A ‘wait’ interface 52
2.9 INTERRUPTION 53

2.10 OTHER INSTRUCTIONS (z80 ONLY) 57
Auxiliary registers 57
Operations mvolvmg individual bits 57
A counting jump 57
Step and block instructions 58
(i) Copy 58
(ii) Search 58
(iii) Input 59
(iv) Output 59
Interruption 60
Notations 60

3 Instruction sets 61

3.1 EXPLANATION 61

3.2 MOTOROLA 6800 64
Microprocessor 6800 64
6800 Instruguon set — main table 65
6800 Substxgutlon tables 66 :
6800 Notes 67
6800. Karnaugh map 68
6800 Instmct:ons in numencal order of operation code 70

3.3 INTEL 8080 AND 8085 71 -
" Microprocessof 8080 71
*8080 Instruction set — main table 72
8080 Substitution tables 73
8080 Notes 73
8080 Karnaugh map 74
8080 Instructions in.numerical order of operation code 76
* Microprocessor 8085 77

3.4 znoc z80 80
Microprocessor Z80 80
780 Instruction set — main table 78
780 Substitution tables 81
780 Notes 82
Z80 Karnaugh map 84
-Z80 Instructions in numerical order of operation code 94

3.5 .DICTIONARY OF INSTRUCTIONS 95

vii

viii CONTENTS
4 Programming: arithmetical operations 11

4.1 - MINIMUM USABLE SYSTEM AND SOFTWARE 111
4.2 AscCli CODE 112
4.3 READING DECIMAL DIGITS 114
Example 1 114
. Exercises 117
4.4 "DECIMAL INTEGERS-INPUT AND OUTPUT 118
Exercises 123 '
4.5 BINARY ARITHMETIC-INTEGERS 124
4.5.1 Change of length of a number 124
4.5.2 <Comparisons 125 '
4,53 Single-length multiplication 126
4.5.4 Multiple-length multiplication 128
4,55 Single-length division 130
4.5.5.1 Multiple-length quotient of single-length numbers 132
4.5.6 Division of multiple-length integers - 133
4.6 BINARY ARITHMETIC OF NON-INTEGRAL QUANTITIES 134
4.6.1 ‘Fixed-point’ representation of non-integral quantities 134
4.6.2 Multiplication 134
4.6.3 Addition and subtraction 135
4.64 Division 136
4.7 ‘FLOATING-POINT BINARY NUMBERS 137
4:7.1 Representation and conventions 138
~ Variations 139
47.2 Normalization 139
4.7.3 Auxiliary routines 141 ,
4.7.3.1 Shifting triple-length numbers 141
4,7.3.2 Adding triple-length numbers ‘141
4.7.3.3 Subtracting triple-length numbers 141 -
4.7.3.4 Multiplying triple-length numbers 141
: © 4,7.3.5 Dividing triple-length numbers 142
4.7.4 The floating-point subroutines — general 142
- 4.7.5 Floating-point input and output 144
4.7.5.1 Floating-point output 144
4.7.5.2 Floating-point input 145
4.7.6 Simple programming with floating-point subroutines 146
' Example 146
Exercises 148
4.7.7 Condition flags and floating-point numbers. 148
4.8 BINARY-CODED-DECIMAL ARITHMETIC 149
4.8.1 Addition of unsigned integers 150
4.8.1.1 Single-length 150
4.8.1.2 Double-length 150
4.8.1.3 Multiple-length | 150
4.8.2 Signed BCD integers 151

CONTENTS

5

4.8.3 BCD multiplication 153 ~
4.8.4 BCD fractions 155

Programming : non-numerical operations 156

5.1 NON-NUMERICAL QUANTITIES ~ 156
5.2 COPYING ‘BLOCKS’ OF INFORMATION 156
5.3 SEARCHING A LIST 159
54 SORTING 162 , .

Length of a list 169

(% ements of other kinds 169

5.5 pAcm’ TION — QUANTITIES LESS THAN ONE BYTE IN LENGTH 169
5.6 RECORDS AND FILES 171
5.7 SPECIAL PERIPHERAL DEVICES 172

 Programming at higher levels 175

6.1: BASIC TOOLS FOR PROGRAMMING AT mcmNB-ooDB LEVEL 175
-6.1.1 Momtor 176
‘dxsplay 177
G -‘go’ 177
I - ‘input’ . 177
. M-=‘copy 177
' . R - ‘resume program’ 178
S - ‘substitute’ . 178
X - ‘examine register’ 178
6.1.2 Assembler 179
6.1.3 Disassembler 181
" 6.1.4 Prograiaming and reading PROMs 181
6.2 SUBROUTINES 181
6.2.1 Input 182
6.2.2 Output 183
6.2.3 Fixed-point arithmetic 184
6.2.4 Floating-point arithmetic - 188
6.3 MOVING UP FROM THE LEVEL OF MACHINE CODE 189
6.4 MOVING DOWN TO THE LEVEL OF MACHINE CODE 195

Software: organization, language, structure 197

7.1 mcnopxoassons IN CONTEXT 197
* Exercises 198
7.2 SOME CONSIDERATIONS IN THE PLANNING AND DESIGN OF SOFTWARE 199
7 .3 NOTATIONS AND LANGUAGE 201 :
7.4 STRUCTURE AND STYLE 207

8

INDEX

First software for a small BOSb system: 210

8.1 HISTORY 210
8.2 THE MONITOK PROM (0000-G3F r) 211
8.2.1 The monitor program - main part 212
8.2.2 Spacial subroutines 213)
8.2.3 The monitor program - branches 213
I (‘input’) at 00E3 214
S (‘substitute’) at 0106 214
D (‘display’ or ‘dump’) at 0133 214
M (‘mimic’ or ‘copy’) at 0180 214
R (‘resume’) at 00CA 215
G (‘go’) at ODC4 215
X (‘examine registers’) at 0215 215
8.2.4 Other subroutines 216

" 8.2.5 Programs for the PROM programmer (0360-03EB) 217
8.3 THE ASSEMBLER (0400-07E2, 0800-0BDF, 0C00-0D6E, 0D85—0DC9) 217

OC20 onwards; processing on instruction 219
Subroutines for the assembler 220
‘ASCII-Hex (assembler)’-entry 0BOO 220
‘Operator’-entry 0B20 220
‘Construct J>-entry 0B60 ~ 220

‘Single-length register or J*-entry 0BIB 220

‘condition’-entry 0BCO 220
‘Form JK’-entry 0A00 220
‘Construct JK’-entry 0B80 221
8.4 THE DISASSEMBLER (2800-2B7F) 221

8.5 SUBROUTINES FOR INTEGRAL AND FIXED-POINT ARITHMETIC 222
-8.6 FLOATING-POINT SUBROUTINES 223

8.7 ERRORS AND SHORTCOMINGS 224
8.8 ANNOTATED TEXT OF SOFTWARE 224
8.9 HEXADECIMAL TEXT OF SOFTWARE 307

313

CONTENTS

Microprocessors and microprocessor
systems '

1.1

BASIC IDEAS

Physically, a microprocessor is a very large-scale integrated circuit containing the equiv-
alent of several thousands of discrete components on a silicon chip about 4 mm square
encapsulated within a dual-in-line package with (typically) 40 pins. Logically, it is a
clocked sequential circuit, that is a circuit which will change its internal state, and hence
its output signals, in phase with clock pulses. The clock pulses are usually, though not in
every case, generated externally. Each change of internal state is determined by the
processor’s current internal state together with the set df input signals. So far this descrip-
tion applies equally to, say, a JK flip-flop; the difference is in the matter of complexity,
for there are very many possible combinations of input signals, very many possible
internal states, and very many possible combinations of output signals.

The operation of the microprocessor can be seen, however, in fairly simple terms.
Essentially it amounts to the repetition of a cycle of internal states. This cycle, the
instruction cycle, always comprises the following stages. i

(i) A set of input signals (an instruction) is read (latched) into an internal register
(the instruction register) of the processor. -

-(ii) The processor passes through a sequence of states determined by the bits compos-

ing theinstruction, and possibly involving the reading of further input signals (data)
or the generation of output signals (results). This is the execution of the instruction.

" (iti) Finally, a set of output signals is generated (the next instruction address), which

is used by external circuitry (normally the store or memory') to determine the
next instruction to be presented to the processor.

'Memory : Part of a computer system used to store data. . . . Store: British word for “memory” °:
Donald E. Knuth, The Art of Computer Programming. Volume 1: Fundamental Algorithms.
Reading, Massachusetts: Addison-Wesley, 1968.

‘memory (of a COMPUTER), se€ STORE. . . .

store. The most expensive part of a COMPUTER, where the information (both PROGRAM and
data) is kept. The neutral term store is to be preferred to memory to avoid the danger of
anthropomorphizing computers. . . . *: the late Christopher Strachey in The Fontana Dictionary
of Modern Thought. London: Fontana Books, 1977.

] TY S T&

» 1 < MICROPROCESSORS AND MICROPROCESSOR SYSTEMS ‘

‘woysAs Jossaordorowm [eordA1 y yp'p amdyy -
£ $nq Bieg AN
N 7
raY N ;)7
~
sau) jouoD)
) ,L‘ V2 .
anding inding and3no-3nduj Indyj 401§ , | dossad0udoidyy
AN
\)7 J

souf] jOUOD)

SNq ssaIppyY

SEC. 1.1 - BASIC IDEAS . 3

The sequence of instructions required to cause the processor to accomplish
‘some specific task is a program. The instructions of the program being executed are
held in a store (conceptually a large arrcy of bistable elements). As each instruction
is required by the processor its address (the set of bits defining its location within the
store) is generated by the processor and presented to the store. A copy of the instruc-
tion is then input to the processor; the contents of the store remain undisturbed.
Now an address can be regarded as a binary number, and normally the next instruction
is that whose address follows that of the current instruction in the numerical sense of
having the next greater value. However, a given instruction'may require to be followed
in execution by an instruction which does not occupy the next address in store. The
passibility of such jump instructions means that certain sequences of instructions may
be executed many times while others may not be executed at all during some execution
of the program, depending on the data with which the program is working. (The
number of instructions stored is no clue to the number of instructions executed or to
the time which a program will take to run.)

The microprocessor and store together form the basic microprocessor system.
In general there will also be other system components, called peripheral devices.
Typically there will be at least one input device, by means of which numbers or other
quantities (for example, instructions or instrument readings) can be taken into the
store or processor, and at least one output device, by means of which numbers (sets of
bits) can be taken from the store or processor to the outside world (for example, to
be printed, or to control the operation of a machine). A typical microprocessor
‘system is illustrated in Figure 1.1. .

The components are connected by sets of wires:

(i) the data bus, which may at any given time be carrying,
(a) an instruction from the store to the processor;
(b) a number from the store or an input device 1o the processor;
(¢) a number (result) from the processor to the store or an output device;
(d) a number between one part of store and another, between store and a
peripheral device, or between two peripheral devices;

(ii) the address bus, which may at any given time be carrying

(a) . the address of the next instruction required to be executed by the processor;

(b) the address of a number.in store required for computation by the processor;

(¢) the address into which a number computed by the processor 1s to be
written ;

(d) the address (or device number) of an input device from which the processor
is to receive a number;

(¢) the address (or device number) of an output device which is to receive a

". number from the processor;

(f) an address concerned in a transfer as in (i) (d) above; -

(i) control lines, carrying timing and control signals which ensure the synchroniza-
tion and coordination of the computer, in ordet to ensure the correct operation
of transfers of information as listed under (i).
Some microprocessors require variations of. this basic scheme. The integrated
circuit may be so organized that the address bus and data bus have to share a common

