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PREFACE

Signal precessing may broadly be conmsidered to involve the recovery of
information from physical observations. In the presence ‘of random dis-
.turbances, we must resort to statistical techniques for the recovery of the
information. Applications of statistical signal processing arise in a wide
variety of areas such as communications, radio location of objects, seismic
signal processing, and computer-assistedt medical diagnosis.
" This book is intended to serve as a first-yéar graduate level text in
statistical signal processing and aims at covering certain basic techniques
in the processing of stochastic signals and illustrating their use in a few
specific apphca’uons The motivation for writing this book arose from the
instructional experience of the authors at Southern Methodist University
(M.D.S.), Dallas, Texas, the Indian Institute of Technology (P.K.R.),
Madras, India, and the Indian Institute of Science (M.D.S.), Bangaloreﬁ
India, where they have been involved in teaching graduate level courses in
statistical communication theory, radar systems, system identification,
pattern recognition, stochistic control, and biomedical signal processing.
An jmportant realization of this experience was that an essentially com- -
mon background in certain techniques for statistical signal processing is
required for these apparently different courses. Ih particular, the topics of
detection and estimation theory constitute a common foundation in many
of these courses. Most available texts provide a treatment of these two
v toplcs in varying detail, but usually cover only one of the application areas
in depth while making only a passing reference to the others. It was felt
that there was a need for a text that presented these two basic topics in a
clear and concise fashion and illustrated their use in several areas. The
particular areas chosen for coverage in this text are communications,
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vi Preface

radar, pattern recognition, and system identification. These four areas are
by no means exhaustive but were selzdied because of their generality and
widespread use. Many of the techniques in the text can be either applied
directly or extended to other application areas such as speech or image
processing. It is expected that first-year graduate students as well as
practicing engineers in different disciplines will use the text to acquire a
background suitable for advanced study and a better understanding of the
fields in which they are involved. -

The background required to use this book is a course on systems theory
and a course on stochastic processes. The mathematical rigor takes a
middle path so as not to obscure intuitive reasoning. The first chapter
presents an introduction and overview of the text. Chapter 2 is intended to
serve as a quick review of certain results in systems theory and stochastic
processes that are useful in later developments. The basic background in
detection and estimation theory that is required for the latter applications
chapters is provided in Chapters 3 through 6. The applications chapters,
Chapters 7 through 10, can be covered selectively and in any order,
depending on the interests of the class. For a class with strong interests in
communication, a good suggestion is to review Chapter 2 quickly, follow
up with Chapters 3 through 6 on theory, and emphasize Chapter 7 on

communication systems and Chapter 8 on radar systems. On the other.

hand, for a class with strong interests in pattern recognition or control,
Chapter 9 may be emphasized instead. Many exercises are included at the
end of each chapter, serving the dual purpose of obtaining a better
understanding of the text material, and presenting new applications or
results not covered in the text.

We wish to express our gratitude to our graduate students and the
reviewers of the manuscript for their comments which were extremely
hélpful in bringing this book to publication. Much of the contribution of
one of the authors (P.K.R.) was accomplished during his stay at the
Instituto Nacional 'de Astrofisica, Optica y Electronica (INAOE), Puebla,
Mexico. He is grateful to Dr. G. Haro, Director-General and other
authorities of INAOE for providing him the necessary facilities.

M. D. SRINATH
P. K. RAJASEKARAN.

Dallas, Texas
 Huntsville, Alabama
March 1978
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CHAPTER 1

INTRODUCTION

-

Statistical signal processing has application in a wide variety of human
activity. Such applications range from processing of seismic- signals to
computer-assisted medical diagnosis and treatment, tracking of objects in
space, and traffic control. :

Signal processing generally involves the recovery of information from
physical observations. The processing required is relatively simple if the
observation contains the information explicitly, and any interference pre-
sent is exactly described. Often, the physical characteristics and limitations
of the devices used for observation, and /or the media through whi¢h the
information is observed or communicated, make this impossible. In fact,
the interference is usually random in nature, and can only be described in
terms of its average properties or statistics, The processing of such an
observation in order to recover information can be termed svatistical signal
processing. This book is devoted to this topic and some applications.

To illustrate the type of problems that arise in statistical signal process- -
ing, let us consider the radio location of a flying object (target) in space.
We can do this by beaming a packet of electromagnetic energy in the
direction of the target and by observing the reflected electromagnetic
wave. We have two problems to consider at this point. The primary
problem is to decide whether there is an object present at all (the detection

_problem). If we decide that the object is present, we may desire to
"determine certain parameters associated with the object, say its range or
velocity (the estimation problem). If there is no -interference and if the
" reflected wave is not distorted through the transmission medium, the
solution is straightforward. We monitor the reflected signal and observe
the time delay 7 between the transmitted and reflected waves, by noting
the time at which a peak occurs. If the target is not present, there will be

1

5’)"'“()2



2 Introduction’

no peak. If a target is present, we can estimate its range as R = lzc—, where ¢
is the velocity of propagation of the electromagnetic wave.

In the presence of interference (noise), the solution is no longer simple.
The interference could be due to distortions through the transmission
media, or thermal noise in the measurement device. The effect of the
interference is to mask the peak that we are monitoring. We may get a
spurious peak when no target is present or we may not be able to discern a
peak when a target is present. In either case, the presence of noise can
cause erroneous decisions. Our problem is to monitor the signal for a
certain length of time, and decide about the presence of the object. This is
the detection problem and falls into the general topic of statistical decision
making.

If we decide that a target is present and seek to determine its range by
observing the delay, we may still have difficulties because of the inter-
ference causing the peak to appear at the wrong time. We then have the
problem of recovering the information (target range) from the “noisy”
observation and is the estimation problem referred to earlier.

These two problems of detection and estimation arise in many other
areas besides the radio location problem and are basic to all statistical
signal processing techniques. Similar problems are encountered in areas
such as communication, pattern recognition, and system identification. In
analog communication systems, the transmitted message usually undergoes

. distortion during transmission. This distortion is usually chardcterized at
the receiver as noise in the observations. In many cases, the message, for
example, an audio or visual signal, may be modeled as a stochastic signal.
The problem of recovering the message at the receiver can then be
formulated as one of estimating a random signal in the presence of random
noise.

In a digital communication system, the message is encoded into a
sequence of binary digits (more generally into a sequence of several
symbols). Typically these digits (bits), represented by a 1 or O are trans-
mitted by sending suitably chosen pulses which again are distorted during
transmission. The effect of this distortion is that, at the receiver it is no
longer possible to determine which waveform was transmitted. We can
again model the distortion during transmission as random noise in the
receiver. The problem is one of deciding on the basis of noisy observations,
whether the transmitted waveform corresponds to 1 or 0.

Recent work in efficient speech transmission involves characterizing the
speech waveform by means of certain parameters that describe its
spectrum. These parameters are then transmitied to the receiver which
synthesizes the speech waveform from a knowledge of these paramters.
The problem of extracting the parameters is an identification problem and
is essentially one of estimating the parameters in a suitably chosen model
for the speech waveform. These parameters undergo distortion during



1.1 Organization 3
transmission so that at ‘the receiver we have the problem of recovering
(estimating) the parameters from noisy observations.

Pattern recognition systems also provide examples of systems mvolvmg
-signal processing. Consider that we want to design an automatic machine
to distinguish between two handwritten characters, say “a” and “b”. The
characteristics of these letters will vary with the person writing them.
Typically, a single specimen can be characterized as a sample from a
population with a known statistical description. The machine is to be
designed to distinguish between the two classes or categories—the letters
“a” and “b”—when a sample is presented to it. Often the statistics of the
populatlon will be unknown and will have to be determined from samples
from each of the two classes. Another pattern classification example arises
inelectroencephalograph(EEG) analysis. The EEG is a recording of electri-
cal brain signals and may be used in a variety of clinical purposes. A typical
application is in the determination of the sleep state of a patient. The EEG
signals are corrupted by noise introduced by the measuring device so that.
the characteristic features of the EEG will have to be estimated in order to
determine the sleep state. Other applications involve the study of evoked
potentials or response to stimuli and can be used for determining sensory
perception. The evoked response is superimposed on the normal EEG,
which in this case may be treated as interference. The useful information
from the evoked response is obtained in terms of certain characteristic
lines in the power spectrum which can be used for diagnosis and study of
any abnormalties.

The preceding has served to point out that the problems of detection
and estimation arise either seperately or jointly in a wide variety of
applications. While there is a seeming dichotomy between the two, in fact,
there is an underlying similarity in the structure of the two problems,
which facilitates the solution of many signal-processing problems. The aim
of this book is to develop the fundamentals of detection and estimation
theory as the basis of statistical signal processing and illustrate the applica-
tion of the concepts and techniques in various areas. The application areas
chosen are communications, radar systems, pattern recognition, and sys-
tem identification. These areas are by no means exhaustive, but have been
chosen because they are general enough to be of interest to a fairly wide
audience.

1.1 ORGANIZATION

The book is addressed to the first-year graduate student in the disciplines
of electrical and systems engineering. It also will serve the purpose of a
graduate engineer in industry who is exposed to a wide variety of signal-
processing problems but has not had an opportunity to obtain a cohesive



4 Introduction

background. Typically the student of this test may be expected to have had
a prior course in systems and a course in probability and stochastic
processes. The exposure to systems should preferably have included state
variable and transform techniques for both contmuous-tlme and discrete-
time systems.

The book essentially consists of two parts. The first part consisting of
Chapters 2 through 6 provides the basic framework of detection and
estimation theory, while the second part which consists of Chapters 7
through 9 covers applications to the four areas mentioned earlier. Specifi-
cally our coverage is as follows. In Chapter 2, we provide a quick review of
basic concepts from systems theory and' stochastic processes which is
useful in the developments in the later chapters. In particular we discuss
Gauss—Markov models for signal generation and the complex representa-
tion of band-limited signals.

Chapter 3 is concerned with the first class of statistical signal-processing
problems, namely, decision problems. In this chapter we discuss classical
decision theory using statistical hypotheses testing methods. Various deci-
sion criteria are introduced and decision rules obtained..The performance
of the decision rules are also investigated. The sequential decision test of
Wald is alSo included for the sake of completeness. These concepts are
extended in Chapter 4 to the detection of waveforms observed in noise.

The results are primarily derived in terms of a binary hypotheses testing
problem in which we are required to detect which one of two known
waveforms is present in the observations. The correlation receiver and the
matched filter are obtained for optimum processing when the interference
is additive white noise. Reeeiver structures for signals observed in colored
noise are derived. The chapter concludes with a brief section on the
detection of signals with unknown parameters.

Chapter 5 deals with the problem of estimating parameters from ob-
servations that are corrupted by noise. The Bayes’ estimators for parame-
ters are obtained. Bounds on the performance of these estimators are
presented. The concept of a reproducing density is introduced and applied
to the estimation of parameters of probability density functions.

Chapter 6 considers the minimum-mean-square estimation of signals
observed in noise. For stationary processes, the classical Wiener filter is
derived for both continuous-time and discrete-time processes. The Kalman
filter which provides an attractive recursive solution to the estimation
problem in nonstationary processes is discussed. Estimation techniques for
certain nonlinear signal models are also considered. ‘

* After developing the powerful tools of detection and estimation theory
in these four chapters, in Chapter 7 we consider applications to communi-
cation systems. We first consider digital communication systems and
develop optimum receiver structures for a variety of digital transmission
schemes. We consider the performance of these receivers in various situa-
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tions, including fading. Techniques of synchronization are presented and
the problem of intersymbol interference discussed. The second part of this
chapter considers demodulator structures for demodulation of analog
modulated signals. Two different techniques, one using the maximum a
posteriori estimation. technique and the other using the minimum-mean-
square estimation technique are used in deriving optlmum demodulator
structures.

In Chapter 8, we study apphcauons to radar systems. The models for
radar targets are derived using the complex representation of signals
developed in Chapter 2. In addition to studying the detection of fluctuat-
ing and nonfluctuating targets, the problem of estimating such radar
parameters as delay and Doppler frequency is investigated, and the con-
cept of signal design to improve the accuracy in estimating these parame-
ters is presented. The chapter concludes-with an application of the Ka.lman
filter for dynamic target tracking and maneuver detection.

Chapter 9 considers applications to pattern classification and system
identification. The problem of pattern classification is posed as a hypothe-
sis testing problem by assoclatmg the various pattern classes with hypothe-
ses. The problem of learning the parameters of the associated density -
functions under both supervised and unsupervised conditions is discussed,
The important problem of extractmg the - features of a pattern ‘is also
presented. '
" The second part of this chapter dlscusses the identification of systems
based on input and output measurements. We first consider the identifica-
tion of the parameters of an autoregressive (AR) or autoregrwslve-
moving-average (ARMA) model of a stochastic process. Identification in
signal models using state augmentation techniques is discussed. The maxi-
mum likelihood technique for 1dent1f1catlon in linear time-invariant models
" is also presented. _

Three appendices are included. Appendix A provides a bnef review of
the bilateral Laplace and z-transforms which are used widely in the text.
' Appcndlx B summarizes pertinent features-of certain optimization tech-

niques which are used in Chapter 4 while Appendix C discusses vector and
matrix operations which are useful. In particular, a nseful matrix lemma is
presented in this appendix.

While Chapters 3 through 6 are essential for an understandmg of the
remainder of the text, the text is structured such that the applications
chapters can be covered selectively and in any order depending on the

. interést and background of the intended audience. The exercises at the end
of each chapter serve a dual purpose—to better understand the material
covered and to present new applications or results not covered in the text.
While each chapter contains several references, a supplementary bibliogra-
phy of about 200 references which contain many pertinent contnbutlons, is
provided at the end of the text.



CHAPTER 2

SIGNALS AND SYSTEMS

2.1 INTRODUCTION

In the previous chapter we have presented several examples in which
statistical signal processing plays an important role. The role of the signal
processor is to extract information from the observed signals and present it
in a useful form. The proper design of the processor requires an ap-
propriate description or characterization of the signals as well as of the
systems generating these signals. For example, in radar tracking, we would
like to know the location and velocity of the object being tracked. The
signal of interest in this case is the radar return which is usually corrupted
by various noises such as thermal noise in the processor. A description of
the signal can be given in terms of the equations of motion of the object
being tracked while the noise is usually modeled as a sample function of a
stochastic process. '

In this chapter we briefly review models for the generation of random
signals and discuss some representations of these signals. We will find
these results to be of use in our discussions in later chapters.

2.2 SYSTEM THEORY [{2]

By a system we mean a model of a physical object or a collection of
physical objects. A model is essentially an idealization of a physical object
which retains the salient features of the system, but is easier to study. In
this section we discuss some concepts and techniques which are useful in
studying the behavior of systems.

6



2.2 System Theory 7

A given physical system may give rise to many different models and the
choice of a model depends on the ude to which it is to be put. As an
example, in studies of the trajectory of a satellite, we may use a particle as
the model. In maneuvering, however, a rigid body model would be more
appropriate. :

Once a mode! has been determined, the next step is to obtain a
mathematical representation of it. This requires the selection of pertinent
variables, reference directions and coordinate axes and the application of
appropriate physical laws. The equations that describe a system may
assume many forms; they may be algebraic equations, integral or differen-

tial equations, and so on. The choice of a particular representation again
" depends on the application. Once the mathematical description of a system
is obtained, the next step is to evaluate the behavior of the system and to
modify the system if the behavior is not acceptable. The evaluation may be
carried out by observing the general properties of the system, or by
determining specific responses to typical inputs. v

In obtaining a mathematical model we define cértain quantities (vari-
ables) as the inputs to the system and certain other quantities as the
outputs. For example, in an electric motor, we may consider the armature
voltage or the field current as inputs and the shaft speed as the output. In
general the inputs and output variables will be functions of time. If the
output at any instant ¢, is dependent only on the value of the inputs at that
instant, the system is a zero-memory system. Most systems, however, have
memory. That is the output at ¢, depends not only on the inputs applied at
£, but also on the inputs applied prior to and/or after ¢,. Such systems are
called dynamicai- systems. For dynamical systems, if an input wu(f) is
applied for ¢ <t,, the output y(f) for ¢ >, cannot in general, be uniquely
determined, unless u(z) is known for t <¢,. If two inputs u,(#) and uy(?)
which are identical for ¢ >, but distinct for 7 <¢; are applied to the
system, the output y(#) for £ > ¢, will be different for the two inputs. For an
input to give rise to a unique output, the system must be initially relaxed or
at rest. That is if an input is applied for ¢ > f,, there must be no stored

energy in the system prior to ¢,. For systems initially relaxed at = — oo,
we can write the relation between the input and the output as
y(8) =T{u(r)} (22.1)

where T is an operator or function describing this relationship.

We consider only systems in which the input—output relation is a
differential equation (differential systems) or a difference equation (dis-
crete systems). The system is linear or nonlinear depending on whether
these equations are linear or nonlinear.
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All'physical systems are causal or nonanticipative. That is, if the system
is initially relaxed, there can be no output prior to an input being applied.
More precisely, if [u(?), »(¢)] and [4,(9), y\(?)] correspond to two input—
output pairs, the system is causal if u(s)= u,(¢) for 1 <t, implies that
»(8)=y,(2) for t <t,. In some of our applications, however, we will have
occasion to use noncausal models. An example is the ideal iowpass fllter

Linear Systems

The system described by Eq. (2.2.1) is said to be linear if, for any two
arbitrary inputs'u,(¢) and u,(r) and any two scalars a, and a, -

T{au (1) + f‘z“z(’)} = a;T{u\(#)} + a,T{uy(1)} ‘ (222)

It easily follows from Eq. (2.2.2) that for any finite n
1 3 au0| = £ (o)  @23)
i=1 J =1

We will assume that Eq. (2.2.3) holds also for infinite sums and integrals.
In regard to input—output relationships, the terms linear system and linear
operator are equivalent. Equation (2.2.2) is also referred to as the principle
of superposition. We note that for the principle to hold, the system must be
initially relaxed. That is, all initial conditions in the system are zero.

A linear differential system is characterized in terms of its input—output
relation by a linear differential equation. -

A system is time invariant or-stationary if its parameters do not vary
with time. For example the differential equatlon characterizing the system
will be invariant with respect to a shift in the time-axis. That is, if the
response to an input u(?) is y(/), then thé response to the input u(t) delayed
by r equals yit-1) -

T{u(t - 7)} = y(t - T) - (224)

Impulse Response and the. Convolution Integral

A linear system can be characterized in terms of its response to certain
elementary inputs. One such input is the impulse function. Let us denote
by A(¢, 7) the response of the system at time f to a unit impulse applied at
time 7. We note that h(¢, 7) denotes a family of functions indexed by the
parameter r. :
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The output y(¢) 'to an arbitrary input u(r) is then obtamed from the
convolution mtegral as

y(t) = f_wh(t, P)u(r) dr (2.2.5)

We say that y(z) is obtained as the convolution of the two functions h(, )
and u(¢) and write

Y1) = h(1, 7) * u(1) (26

where « refers to the convolution operation of Eq. (2.2.5).
For a causal system, the response is zero prior to an input belng applled
Thus for a causal system we can write

ht,1)=0 1<t (22.7)

It follows that the output of a /li.near causal system is given by
(1) = f "R, Tu(r) dr (22.8)
S '

If the input is zero prior to a finite time 4, Eq. (2.2.8) reduces to
y(1) = f ‘h(t, TYu(r) dr (2.2.9)
o
For time-invariant systems the convolution integral, Eq. (2.2.5), becomes
o0 : o0 .
y(t) = f " h(t— r)u(r) dr= f h(r)u(t — 1) dr (2.2.10)
—o0 ]
If .the system is causal, then A(¢) =0 for t <0 and the output is given by
t 0 :
y(1) = f h(t = 1)u(r) dr = f h(r)u(t — 1) dr @2.11)
— oo - \ 0

We will refer to any function f(f) of ¢ which is ze'ro for negative values of ’
as a causal function. Similarly if f(t) = 0 for ¢ > 0, we will refer to f(¢) as an
anticausal function. If

_ L) <0,
f(’)'{f(z) 150

we will refer to £.(1) as the causal part of f(¢) and f,(¢) as the anticausal part
of f (t)

(2.2.12)



