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Foreword

The aim of this volume is to provide advanced predoctoral students and
young postdoctoral physicists with an opportunity to study the concepts
of tunneling phenomena in solids and the theorctical and experimental
techniques for their investigation. The contributions are primarily tutorial
in nature, covering theoretical and experimental aspects of electron tunnel-
ing in semiconductors, metals, and superconductors, and atomic tunneling
in solids.

The work is based upon the lectures delivered at the Advanced Study
Institute on “Tunneling Phenomena in Solids,” held at the Danish A.E.C.
Research Establishment, Ris6, Denmark, June 19-30, 1967. Sponsored by
the Danish Atomic Energy Commission, the Nordic Institute for Theoretical
Physics (NORDITA), and the Science Affairs Division of NATO, with the
cooperation of the University of Copenhagen, the Technical University
of Denmark, Chalmers Institute of Technology, and the University of Penn-
sylvania, the lectures were presented by a distinguished panel of scientists
who have made major contributions in the field. The relatively large number
of lecturers was, in part, made possible by the close coordination of the
Advanced Study Institute with the Second International Conference on
Electron Tunneling in Solids, which was held at Risd on June 29, 30 and
July 1, 1967, under the sponsorship of the U.S. Army Research Office-
Durham. We are indebted to I. Giaever, E. O. Kane, J. Rowell, and J. R.
Schrieffer for advice and assistance in planning the lecture program of the
Institute.

The Institute was made possible through the active interest of an or-
ganizing group consisting of H. Hgjgard Jensen, A. Mackintosh, N. I.
Meyer, M. Nielsen, and K. Saermark. The Danish Atomic Energy Com-
mission supported the Institute financially and made available its facilities
at the Risd Research Establishment. We take this opportunity to thank
the Danish AEC officials for their gracious cooperation. In particular, we
would like to express our gratitude to the Director of the Research Estab-
lishment, Professor T. Bjerge, for his kind interest and for being a generous
and excellent host.

The heavy burden of making all the arrangements for the Institute
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was very ably undertaken by M. Nielsen and by the Information Officer
of the Research Establishment, Mrs. J. Starcke. Dr. Nielsen and Mrs.
Starcke kept the secretariat running smoothly at all times and helped the
Directors of the Institute, as well as the participants, in solving the many
problems that arose. We would like to express our warmest thanks to them
for their patient and efficient work in following as closely as possible our
intentions along a rather winding course toward a successful end.

E. BURSTEIN, Director of the Institute

S. LuNDQVIST, Associate Director of the Institute
October 20, 1968

N ’
T \‘, A !



Contents

Chapter 1
Basic Concepts of Tunneling
by E. O. Kane ........ .. it

Chapter 2
WKB Methods
by W. Franz .......... ...

Chapter 3
Metal-Insulator-Metal Tunneling
by I Giaever .......... ... . . . i

Chapter 4
Theory of Metal-Barrier-Metal Tunneling
by C. B. Duke ... .. ..

Chapter 5
Tunneling
by L. Esaki ...

Chapter 6
Interband Tunneling
by E. O. Kane and E. I. Blount .........................

Chapter 7
Interband Tunneling—Theory
by R.T. Shuey ... i

Chapter 8
Tunneling in Schottky Barrier Rectifiers
by R. Stratton

Chapter 9
Some Properties of Exponentially Damped Wave Functions
by C. A. Mead

vii



viii

Chapter 10

Image Force in Metal-Oxide-Metal Tunnel Junctions

by J. G. Simmons ... ...

Chapter 11

Phonon-Assisted Semiconductor Tunneling

by R.A. Logan ....... .. .. ... ... . . ..o,

Chapter 12
Effect of Stress on Interband Tunneling in Semiconductors

by H. Fritzsche .. ...... ... ... ... ... . ... .............

Chapter 13
Phonon-Assisted Tunneling in Semiconductors

by L. Kleinman

Chapter 14

Excess Currents in Semiconductor Tunneling
by C. T. Sah

Chapter 15
Phonon-Assisted Tunneling (Franz-Keldysh Effect)
by W. Franz

Chapter 16

Magnetotunneling Effects in Semiconductors

by W. Zawadzki ... ... . .. .. ... ... ...

Chapter 17
Molecular Excitations in Barriers. [

by J. Lambe and R. C. Jaklevic ................... ..

Chapter 18
Molecular Excitations in Barriers. 11
by R. C. Jaklevic and J. Lambe

Chapter 19

Tunneling Between Superconductors

by I Gigever .......... . ... it

Contents

... 135

.o 149

e 167

R £

.. 193



Contents

Chapter 20
Tunneling Density of States—Experiment
by J. M. Rowell ... ... .. .. . .

Chapter 21
Single-Particle Tunneling in Superconductors
by J. R. Schrieffer ....... .. .. . . . . . . .. . . ...

Chapter 22
Many-Body Theory of Tunneling: Polarons in Schottky Junctions
by G. D. Mahan ............. ... .. .. ... ... .. ... .. ... ...

Chapter 23

Geometrical Resonances in the Tunneling Characteristics of Thick
Superconducting Films

by W. J. Tomasch .......... ... .. ... .......0cccciuiu...

Chapter 24
Multiparticle Tunneling
by J. W. Wilkins ........... ... .. . . ...

Chapter 25

Photon-Assisted Single-Particle Tunneling Between Superconductors
by G. E. Evereft ....... ... .. . . . . . i,

Chapter 26

Phonon Generation and Detection by Single-Particle Tunneling in
Superconductors

by W. Eisenmenger ............. ... ... ... ... ... ........

Chapter 27
Tunneling Anomalies
by J. M. Rowell ... ... ... . . . . . . . . ...

Chapter 28

A Unified Theory of Zero-Bias Anomalies and Energy-Loss Mecha-
nisms in the Barrier

by C. B. Duke ......... ... ... . . . . . ..

273

287

305

315

333

353

371

385

405



X Contents

Chapter 29
Gapless Superconducting Tunneling—Theory
by P. Fulde ....... .. . .. . . . . . i 427

Chapter 30
Gapless Superconductor Tunneling—Experiment

by T. Claeson ..... ... . .. . . . . . . . e 443
Chapter 31
DC Josephson Effects

by J. E. Mercereau .................. ..., 461
Chapter 32

The Theory of Josephson Tunneling
by D. J. Scalapino .......... ... ... . .. 477

Chapter 33
AC Josephson Tunneling—Experiment
by D. N. Langenberg ......... ... .. ... ... .. ... ..., 519

Chapter 34
Weakly Coupled Superconductors
by A. F. G. Wyatt . ... .. 541

Chapter 35
Atomic Tunneling in Solids
by J. A. Krumhansl ... .. ... . .. . ... 551

Chapter 36
The Detection of Atomic Tunneling in Solids



Chapter 1

Basic Concepts of Tunneling
E. O. Kane

Bell Telephone Laboratories
Murray Hill, New Jersey

A great many of the features of tunneling phenomena in solids are essentially
of a one-dimensional nature. If the tunneling barrier extends in the x direc-
tion, the momentum in the y and z directions can usually be taken to be
constants of the motion, and hence are merely fixed parameters.

In this introductory chapter we will describe some of the basic concepts
of tunneling by studying purely one-dimensional problems, and we may
anticipate that most of our results will have a wider range of applicability
to real situations than one-dimensional problems usually have.

We will, in fact, study the simplest of all one-dimensional problems,
namely, square barriers and square wells in one dimension. The Schrédinger
equation will have the simple form

(’D2 +V)w=Ew, (1)

2m

where V is a constant in a given region. The general solution of Eq. (1) has
the well-known form

p(x) = ae'** | be—kz, (2)
#k)2m = E — V. 3)

When E — V > 0 the wave functions are plane waves. When E — V' < 0
we will write kK = ix and

w(x) = ae™* + be™*. “)

The wave functions are now exponentially growing and decaying waves
characteristic of barrier penetration problems. In the “square barrier’” and
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X,
Fig. 1.

“square well”” problem which we will discuss ¥ changes abruptly from one
constant value to another. The overall wave function is then constructed
out of pieces having the form of Eq. (2) by matching y and dy/dx at the
discontinuities of V.,

The basic matching problem can be done at a potential step as shown
in Fig. 1. The matching conditions are then conveniently described as a
2 X 2 matrix R operating on the two-dimensional vectors

b)) o ()

which describe the wave function in regions I and I1, respectively, We may

write
a,\ as
(o) =®z) ©)

R — _L ((kl + k,) expli(—Kky+k2)x,] (ky — k) expli(—k, — kz)x1]>
T 2k, \(ky — ky) explilk, + ko)x;] (ky + k) explitk, — k2)x,]
(6)

Of course, Eqgs. (5) and (6) are valid for either real or imaginary values of k.
The general problem of any number of square barriers or wells may then
be succinctly described in terms of a chain of operators of the form R;.

We turn first to the square barrier problem of Fig. 2. We may write
the solution -

Vo
—_— k, —_—
- e— w — ks
k

Fig. 2.
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(1) = RiRe{ze) g

Let us study the boundary condition of an electron incident from the left.
There will be a reflected wave in region 1 but only a transmitted wave in
region 3; hence b, = 0. We want g, in terms of a,. Equation (7) then gives

a;, = (R\Rx)ya;. (3)
Explicit evaluation of (8) with the use of (6) results in

(RyRy),; = lexplikgxy — ikyx)) (k& + 2% ) 2k + #°)'2
% (efre2® — e~te—2W) [(4ik x,) 9

o = tan*‘(_i@/kl) -+ tan 1 (xy/k) (10)

®y, = ik, W= X, — X

We are assuming real plane waves in regions 1 and 3 and tunneling in re-
gion 2. To simplify the formula, we will neglect e =¥ in comparison to
e*; in other words, we consider only a strongly attenuating barrier. Then
we have

- 4k et
— (k12 + x22)1/2(k32 + %22)1/2 a ., (11)

as

g = ie~* exp(ik,x, — iksx,); (12)

@ is a phase factor of absolute value 1, which we ignore for the moment.
The quantity of physical interest that we wish to compute is the ratio
of the transmitted current j; to the incident current j,,

J1 = (k,/m) | ay |*; Ja = Hkyim | ay P (13)
We find
Ja 16k k2 9
= = Lo 14
Jr (ky® 4 22) (k3 + %5%) ¢ (14)
F2x,22m = Vy, — E. (15)

The dominant feature of Eq. (14) is, of course, the barrier penetration
factor e~2=%, In typical problems of interest this factor may be 10-°~10717,
so that it tends to dominate the prefactor. In more realistic problems this
factor can seldom be calculated accurately, so that usually any experi-
mental determination of the prefactor is doubtful or impossible.

[
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Tunneling is one of the simplest examples of a truly quantum mechani-
cal phenomenon. In classical physics a particle whose energy is less than
the height of a potential barrier can never pass through it.

We note that Eq. (14) shows that the barrier transmission is symmetric
in the indices 1 and 3. This means that the barrier transmission is the same
for currents incident from the right or left, as we would expect. We may
also compute the incident current per unit energy if we assume that the states
on the left and right are quantized in a box and occupied with an occupancy
factor f(£). The incident current is given by

fk, dn

AjE) = | a | ——=—= AE fi(E). (16)

Box normalization gives | a |2 = 1/L,, where L, is the length of the box.
The density of states in one dimension without spin is

dnfdE = mL,[2nt*k,; an
hence (16) becomes

AJ(E) = [I(E)27h] AE. (18)

In equilibrium f,(F) = f;(£); hence the current per unit energy incident
on the barrier from either side of the barrier is the same. By the symmetry
of Eq. (14), the transmitted currents per unit energy are also the same, and
equilibrium is maintained, as we should expect.

We may also note that Eq. (14) shows that the transmitted current
goes continuously to zero as either k, or k; approaches zero. This is in
contrast to simple calculations of tunneling in p-# junctions, which showed
a discontinuous change in the transmitted current at the band edge ().
A more careful treatment by Shuey (?) showed that in the junction problem
also the current goes continuously to zero at the band edge.

We now investigate a little more closely the character of the attenuating
states ae—** and bet*® in the barrier. We use the expression for the particle
current operator

— duw*
) = o (7 = ) 22, (19)

We see immediately that ae~*® or be* by themselves carry zero current,
In combination

J(x) = (ihwx/m)(ab* — ba*). (20)
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We can use this property to develop an effective Hamiltonian theory of
tunneling in a manner first described by Bardeen (3).

The smallness of the right-hand sides of Egs. (11) or (14) suggests
that a perturbation treatment of tunneling would be very appropriate.
However, there is no obvious way of introducing a term in the Hamiltonian
which can be treated as small. Bardeen took a different approach. Instead
of introducing states which are the exact solutions of an approximate
Hamiltonian, he introduced approximate solutions of the exact Hamil-
tonian. Following Bardeen, we choose the states

v (x) = bye®;, X < x, 21)

Po(X) = @e™™%; X = Xy, (22)

y, is to be matched to the correct solution for x > x, but is to decay in
the region x <C x, instead of satisfying the Schrodinger equation. Similarly,
y, continues to decay for x > x,. Then y, is a correct solution of H for
x > x; and y; is correct for x < x,. We assume an electron is initially
in y; and compute its transition rate into state p,. We write

y = (e B + d(t)y,e P! (23)
and substitute in the Schrédinger equation

icpe~ Bt 4 oy E et | fJWre_iE't + dy,E e
= ce ‘B Hy, + de ErtHy,. (24)

Since c=1, d=0, we will set d =0, ¢ =0, ¢c=1 in Eq. 24) [¢ =0
follows from normalization, (d/dt}(cc* + dd*) = 0]. Equation (24) then
becomes

idp,e~Ert = (H — Ep)ype~ &, (25)

or
id = [y (H — E)y, dxexpli(E, — Ept). (26)

We assume y; and v, are normalized.

If H = H,+ H,,asin ordinary perturbation theory, and Hyp, = Ep;,
we have

[,*(H — Epy dx = [p,*Hyp dx. 2N
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Accordingly, we identify
Trl = er*(H - EZ)WI dx (28)

as the effective matrix element for tunneling.
The integral in Eq. (28) gives a nonzero contribution only for x > x,.
We can symmetrize Eq. (28) by writing

T;l = fza wr*(H - El)’/’l - wl(H - Er)’/’r* dxs X1 SXB = Xa, (29)

since the added term is zero for the range of integration x > x,. The lower
limit of the integral can take any value in the barrier since the integrand
is zero there. Integrating Eq. (29) by parts gives

2 d dip,*
T = = g (W = ) (30)
Zp

T m dx ¥ dx

or

T, =— iﬁjrl’ (31)

where j,; is the current operator as given in Eq. (19) evaluated at any
point in the barrier. Using Eqgs. (21) and (22), we have

T, = (ﬁ2%2/m)b;ra2l- (32)

We will now use this tunneling matrix element to calculate the tunnel
current from the effective Hamiltonian viewpoint. Noting thata,, = b, = 0,
we use Eq. (5) to relate a;; to a,; and b,, to a;,. This gives

M 16kt | ay [*] ay e

[ Tal* =3 = 7k £ ) (33)
The current incident on the barrier, j;, is
Ji = (Bky/m) [ ay 2. (34)
The transmitted current, j;, is given by
2n  dn (35)

jt‘—:w:'—ﬁ_I rl | d_E;a

using the “golden rule” of first-order time-dependent perturbation theory.
Using Eq. (17) we have
dn m

2 —_— = —
‘au I UE = Tk (36)
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Substituting (33), (34), and (36) in (35), we verify that we obtain Eq. (14).
Hence the effective Hamiltonian approach gives the same result for the
tunnel current as the simple matching procedure.

The “effective tunneling Hamiltonian” provides a justification for the
often-quoted assumption that the tunnel current is proportional to the
density of states. However, we see from the matrix element of Eq. (33)
that other terms in the exponential prefactor are equally important, so
that the final result in Eq. (14) does not bear any simple relation to the
density of states in Eq. (36). Hence the use of tunneling measurements as
a quantitative probe of the density of states must be regarded with caution.
However, it is a well-known fact that superconducting tunneling does quite
accurately reflect the density of states. This has been justified theoretically,
using the effective tunneling Hamiltonian, by Bardeen and others. This is
discussed a great deal more elsewhere in this book.

We turn now to the much discussed question of how long it takes an
electron to tunnel through a barrier. We refer to Fig. 2 and represent the
electron in region 1 by a wave packet with average momentum k, and
energy F, = E(k,):

wi(x, t) = exp[i(k,x — Et)/h]

X f f’ exp itk — k)(x — nDlexp —(k — k)*1dk,  (37)

where we have used

E(k) = E(ky) + (k — k)(dE/[dk);, (38)
1 dE  hk
v=o = (39)

Equation (39) is the usual definition of the group velocity. Carrying out the
integration in Eq. (37) gives

pi(x, 1) = explitk,x — Eyt)/h] exp[— #(x — v1)*]. (40)

Equation (40) shows that the packet moves with group velocity v, in agree-
ment with what we expect from the classical limit. Since the kinetic energy
of the wave packet is clearly positive, we cannot use it to localize the electron
in the barrier region because the electron would then automatically have
an energy greater than the barrier height. What we can do is look at the
packet in region 3 beyond the barrier and compute its time dependence
there. We use Eq. (11) to get the transmitted packet in terms of the incident
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packet. To simplify matters, we set k; — k,. Then Eq. (12) shows that the
plane wave exp{i[kx — E(k)t/h]} on the left of the junction has the form
Aie=™ exp{i[k(x — w) — E(k)t/h]} on the right. Ignoring the phase term
ie~", which does not depend on the junction thickness, we see that the
electron has “lost,” or rather failed to accumulate, the phase ikw in passing
through the barrier. This is, of course, due to the real character of the x
dependence in the barrier region as given in Eq. (4). If we ignore the k
dependence of Ae~*, the transmitted wave packet v, can be written

ylont) = A exp{ifk,(x — w) — Et/h]} exp[— Hx —w — )], (41)

The lack of phase change in traversing the barrier has advanced the trans-
mitted packet by the junction width w relative to the incident packet. In
other words, it appears that the packet has traversed the barrier in zero
time or with infinite velocity.

There is no contradiction between this relation and relativistic limita-
tions, because it was derived from the Schrodinger equation, which is only
exact if the speed of light is made to approach infinity. This curious result
is another way in which tunneling defies classical analogy.

It should not be concluded from this result that tunneling is a very
rapid process. It is, in fact, very slow, as indicated by the very weak tunneling
matrix element in Eq. (33). We can indicate the stowness of the tunneling
process by solving the two-well problem shown in Fig. 3.

We use Eqgs. (5) and (6) to write

a a
(bi) = R1R2R3R4( b:). (42)

The eigenvalue condition results from the requirement that only attenuating
states exist in regions 1 and 5. That is, ¢, = b; = 0. This gives the eigen-
value equation

(R1R2R3R4)11 =0. (43)
W3
1 m Y
o I

Fig. 3.




