F.A. Hopf and G. L. Stegeman




£3 64
P792
N2
Applied Classical
Electrodynamics
Volume II: Nonlinear Optics
F.A. HOPF
G.1. STEGEMAN
h Oblical Sciences Center
University of Arizona, Tucson
i
a ..

_ A Wiley-Interscience Publication
JOHN WILEY & SONS, World Publishing Corporation '

&



Authorized Reprint of the Original Edition,

Published by John Wiley & Sons, Inc. No part of

this book may be reproduced in any form without

the written permission of John Wiley & Sons, Inc.

This special Reprint Edition is Licensed for sale

in China excluding Taiwan Province of China, Hong Kong & Macao
Reprinted by World Publishing Corp. Beijing, 1990

ISBN 7-5062-0509-2

Copyright © 1986 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

* Reproduction or transiation of any part of this work

beyond that permitted by Section 107 or 108 of the
1976 United States Copyright Act without the permission

" of the copyright owner is unlawful. Requests for

permission or further information should be addressed to
the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:
Hopf, F. A.
Applied class:cal clectrodynamlcs

‘A Wiley-Interscience publication.”

Vol. 2 in series: Wiley series in pure and apphcd
optics, ISSN 0277-2493.

Includes bibliographies and indexes.

Contents: v. 1. Linear optics—v. 2. Nonlinear
optics.

1. Electrodynamics. 2. Optics. . Stegeman, G. L.
1I. Title. HI. Series: Wlley series in pure and

applied optics.

QC631.H73 1985 537.6 85-12043
ISBN 0-471-82788-6 (v. 1)
ISBN 0-471-82787-8 {v. 2)

i



Preface

This is the second book of a two volume work on the classical physics of
optical interactions. The two volumes deal with linear and nonlinear optics,
respectively. © These volumes are teaching texts developed for the academic
program at the Optical Sciences Center of the University of Arizona. They are
designed to give a background on issues in optical physics that relate to material
science and laser applications. The emphasis on classical physics reflects the fact
that most practical applications involve the classical limit. Matter obeys quantum
mechanics and the interaction of radiation with matter cannot be developed with
complete consistency from a model of electrons on springs developed in Volume I.
Nonetheless, once the conceptual difficulties resolved by quantum mechanics are
dealt with, nearly all remaining cases in applied optics can be modeled classically.
Classical mechanics leads to a useful phenomenology of considerable breadth of
appllcatlon.

The desngn of the volumes is modular, and there is consnderable flexibility in
the order in which the text can be read or taught. In the Table of Contents, the

chapters, and in some cases the sections, contain, in parentheses, a reference back

to the basic naterial needed for the chapter. Most basic material is in the first
three chapters. Some supplemental techniques are discussed in Chapter 10.
Otherwise one can read the book in almost arbitrary order. In addition, each
topic is developed starting from a fairly elementary level. One need not master

all of the background material if all one is interested in is an overview of the’

ideas. The problem sets are designed to tie the book together into a coherent
“whole, and deal with conceptual issues that might otherwise become diversionary.
Those who wish to do the problems should be aware that the degree of difficulty
varies substantially. Each problem has been tried at least once by one of the
authors (the first author has answered all problems to within factors of €g).

The second volume draws heavily on the concepts in Volume |, but not
necessarily on the algebra. For practical applications, Volume 1l can be, used
without Volume |. Only in dealing with the Kerr nonlinearity and stimulated
Brillouin scattering is there so much algebra involved that we refer extensively to
material in the first volune. We have found it to be difficult to organize and
present the field of nonlinear optics in its entifety in a simple way. The basic
_problem is that there is a great richness in nonlinear phenomena, and new areas
are developed every year. In addition, there are a large number of different
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principles that must be integrated into any one particular case, and each case calls
for a different combination of principles. Since we have no crystal ball that will
clarify what will become important in the future, we take an approach that
emphasizes those aspects of nonlinear optics that have proved to be of most value
over the past two decades, and are therefore likely to continue to be of
importance in the future. We try, however, to maintain contact with areas of
current interest, and areas that have been of interest in the past, but which have
been temporarily abandoned for fack of suitable lasers or nonlinear materials.

The books are designed to allow a reader with a background in classical
mechanics and electromagnetism to learn enough to continue on with texts that
specialize in the specific topics. Thus each topic is not covered in great detail,
and we have tried to judge which areas are adequately covered in existing texts to
avoid duplication. This volume assumes that the interested reader is willing to use
recent books by Shen (general discussion of relevant experimental techniques),
Yariv (stimulated scattering and general background), and Zernike and Midwinter
(parametric oscillators, materials, and ‘optimization of nonlinear interactions).

This book is printed in camera ready form from a personal computet. The
software package we use is still under development by M. Sargent !l and
colleagues. The experimental software imposes some defects and constraints.

We gratefully acknowlege the useful suggestions of G. Salamo, E. van Stryland,
and A. Smirl who have been using preliminary versions of these volumes in their
courses,

Tucson Arizona Frederic A. Hopf
October 5, 1985 » George 1.A. Stegeman
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13

Introduction
- .to Nonlinear Optics

-

One of the benefits of mastering the classical physics of optics comes from its
application to nonlinear optics. Quantum mechanics is needed primarily to provide
noise sources to seed the growth of stimulated scattering; otherwise most
nonlinear phenomena are classical. Most of nonlinear optics is a generalization of
electro- and acousto-optics. Indeed there is no precise dividing line that
distinguishes linear from nonlinear optics. Similarly, there is no precise division
between nonlinear aoptics and electrical engineering.

.~ Most basic principles that. govern nonlinear optics, especially crystal optics
(Chapter 7) and slowly varying techniques (Chapter 10), have been covered in
detail in Volume |. This volume is largely self-contained insofar as the relevant
formulae and nomenclature are summarized in ‘Appendix C of this volume for quick
‘reference. For the beginner, it is best to master at least some of Volume | before
trying this one. "

3

13.1 NONLINEAR POLARIZATION

The nonlinear polarization is formally written as
P(r,t) = egx(DE(r,t)2 + egx(DIE(R,)3 + ooe (13.1

where terms of fourth order and higher in E have been dropped since they
normally play no role in nonlinear gptics. The two nonlinear terms are referred to
as quadratic and cubic, and in all cases discussed in this volume, P(r,t) is a weak
polarization so that the methods of Chapter 10 can be used to calculate radiated
fields. The notation in nonlinear optics can be confusing, especially in the usage
of x( ), and we caution the reader to carefully compare the conventions used
between any two sources before comparing any results. We have used what we
believe to be current notation.

Equation (13.1) is not to be taken as literal truth. It is to be understood in
the same spirit as the linear susceptibility in that the X's are to be associated with
the amplitudes of plane-wave fields.



2 THREE-WAVE MIXING Chap. 13

13.1.1 Three-Wave Mixing

The general nonlinear process using the quadratic nonlinearity involves three-
wave mixing in which two fields are combined to produce a third. We then take
E(r,t) to be written as

i(kyer-uwgt) i(kper-wst)

E(r,t) =% 1By (ky,wp)e + Ey(kp,wo)e +ccl. (13.2)

The two fields are written explicitly as eigenvectors of. the medium. The.square
of the field is then really a dyad product and reads

ee =1 (BEpel PK10r=2010 o g ikirka) er-i(urug)t
+ BB 4 2B Byl tkiTk) riO et g, (13.3)
The terms omitted from Eq. (13.3) duplicate effects that are already included in

the terms that are shown explicitly. The frequencies W and wave vectors kp of
the nonlinear polarization are written as

mp=miiw-
=k * k.
ko = ki * kj.

=12 (13.4)

The four possible combinations and degeneracies in Eq. (13.3) give rise to the
phenomena of second harmonic generation, sum frequency generation, optical
rectification, and difference frequency generation.. Except for the rectification
signal, which plays no important role in nonlinear optics, each of these terms gives
rise to a phased array of dipoles that can radiate as discussed in Section 10.4.
The radiated field must also be an eigenvector., Each triplet of eigenvalues
corresponds to a possible three-wave interaction which, under appropriate
conditions of phase matching, can yield efficient generation of the frequency W
The three waves are denoted a,b,c such that

We > Wy ? W,y 20, (13.5)
We = Wy + W, (13.6)

and the phase match condition (see below) is written in terms of a wave vector
mismatch term 4k defined as

Ak =k, + ky - keo (13.7)

The wave triplets defined by Eqs. (13.5) and (13.6) are collectively referred to as
a three-wave interaction. As we show later, the three-wave interaction is not
merely a convenience. Each triplet is tied together through its own set of Manley-
Rowe relations. Manley-Rowe relations are touched on briefly in Chapter 11.
They play a major role as the primary conservation laws in nonlinear optics. A



Chap. 13 FOUR-WAVE MIXING

Manly-Rowe relation states that waves interchange energy in units of flux over
frequency. When divided by Planck's constant, they are interpretable as quanta.
These quanta are classical objects. Fractional photons can be interchanged.
Because quantum terminology is standard, it is used throughout this volumé. The
reader should understand that no quantum mechanics is implied by the terms. )

Each three-wave interaction involves complicated dot products between the
fields and x @), These products_ always lead to a single scalar coefficicient x off
that characterizes the three-wave interaction. This also allows the definition of
an effective polarization amplitude Pg¢¢ (see Section 10.4 for the definition and
justification of Pagf) as

Peff(w c) =€oX eff(z )(~w cwpa) Ewa) Ewp)e (13.8a)
Similarly for the polarization field generated at the frequencies w ; andwy,
Peffwa) = oX eff@ ) (-wam c,wp) £(w¢) E*wp) (13.8b)
and
Peff®p) = EoXeff @) (-upcmwa) Ewe) B @a). (13.8¢)
These serve to define the meaning of _x(z) in Eq. (13.1) in terms of the field
amplitudes. By convention the output field frequency is always written as a
negative frequency in the susceptibility. wWhenever w, or wp enter the
susceptibility with a minus sign, this means that the optical fields appear as the

complex conjugate part of E(w,) or E(wp), i.e., as E",(wa) or E"(wb). :

13.1.2 Four-Wave Mixing

The development of the cubic term in Eq. (13.1) proceeds in the same way as
the development of the quadratic term. It is left as an exercise to show that if
Eq. (13.2) is generalized to include four waves, then the frequencies and
k-vectors are found in the’combinations ‘ :

wp =W + mi * Wi
kp""kit‘_ kit ke
The most general four-wave interaction is defined by four frequencies

Wy ? Wh 2> We? g > 0. (13.10)

There are two possible combinations of frequencies and k-vectors that can satisfy
Eqs. (13.9) and (13.10). These are

Wy =gt Wh U (13.11)

Ak =k, +kp + ke - kg (13.12)

ijk=1,23 : (13.9)
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and
Wd == Wyt Wy + 0, (13.13) .
Ak = - ka + kb + kc - kd. " (13.14)

Only a few four-wave processes have been found to be useful and a standard
jargon has been developed for thése which are discussed on a case by case basis.
The four-wave susceptibilities are defined in the same way as the three-wave
susceptibilities in Eqs. (13.8a)-(13.8c).

13.2 DEGENERACY

Three- and four-wave mixings are often referred to as being degenerate. The
terminology can have several meanings. The condition in which séveral
frequencies are the same is referred to as frequency degenerate. For example,
second harmonic generation is a frequency degenerate three-wave interaction in
which wy; = wp and w. = 20,. Frequency degeneracy is not necessarily a true
degeneracy, which requires that two or more of the eigenvectors in the N-wave
mixing be the same eigenvector. When unqualified, we limit the term degeneracy
to refer to true degeneracy., The term nondegenerate refers to the absence of a
true degeneracy. Deriving formulae for degenerate interactions from those
describing nondegenerate interactions requires some delicacy, and we usually treat
these as special cases. ‘

13.3 PHASE MATCH CONSTRAINTS

The polarizations developed above radiate as a phased array of dipoles. This
process is developed at length in Chapter 10 and the relevant formulae are given
in Appendix C for quick access. Three-wave mixings are usually strongly
constrained such that, except for the uninteresting rectification effect, only one
three~wave interaction can occur for any one configuration of input beams and
medium. Any one three-wave interaction can be solved with sufficient detail to be
usefully applied to nonlinear devices. Hence we discuss three-wave interactions
in great detail.

With four-wave interactions, at least two terms are always phase matched.
"The case where all four waves are degenerate means that Ak = 0, which describes
either self-focusing or two-photon absorption (see Chapter 3) depending on the
circumstances. The case where E(w,) and E(w)) are degenerate, and E(w.) and
E(wq) are also degenerate is also phase matched. This describes stimulated
scattering. Thus four-wave mixing requires that careful attention be paid to
competing processes. In all cases, it is the form of Xeff(a) that identifies a four-
wave interaction., Four-wave interactions can also be coupled, i.e., one four-wave
process can drive another one. Most of the time, phase match constraints inhibit
coupling, but not always. Because of the competing processes and the couplings it
is not usually worthwhile to develop the theories of four-wave mixing processes in
the same detai! as for three-wave mixings. Exceptions exist, but they involve
special applications to particular cases that are beyond the scope of this book.
Therefore,. when we deal with four-wave mixing we usually emphasize the
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principles without going into the detail that characterizes our discussion of three-
wave mixing.

13.4 NONLINEARITIES

While the field of nonlinear optics can be loosely grouped into cubic and
quadratic processes, we find it to be more efficient to develop the nonlinéarities
according to their origins in the various force terms of Chapters 2 and 3. Those
that originate in the nonlinear force terms derived from the potential given in Eq.
(2.10) are constructed by methods that are analogous to those used in Sections 8,1
and 8.2. Those that come about through the Raman-active potential of Eq. (3.37)
require special treatment which is given later. With this philosophy, some
nonlinear phenomena such as self focusing turn out to be awkward insofar as they
bridge both cases. The important phenomena that fall into this intermediate
category are discussed in separate sections that emphasize this intermediate
status,

There is another organization of nonlinear phenomena that we follow insofar
as it saves a substantial amount of repetition, This is the division of nonlinearities
into those whose function is catalytic, insofar as the medium plays no role other
than to convert one light wave to another, vs. those in which role of the medium
is more complex. In catalytic interactions, essentially no energy is exchanged
between the optical fields and the medium and hence there is no dissipation of
energy via the normal modes. In this case the Manley-Rowe relationships, which
describe the interchange of energy flux in an interaction, involve the light wave
alone. These types of nonlinear interactions tend to behave in similar ways, and
once a few examples are mastered, others can be treated by analogy.

All major applications of quadratic nonlinearities make use of this catalytic
nonlinearity. Four-wave mixings are more complicated. Generally, cubic
nonlinearities are small. Large nonlinearities occur in the neighborhood of the
resonances of the medium. Near resonances, energy is exchanged with the
medium, and a complete energy balance requires an examination of the energy
transferred to and from the medium., Such a case occurs in acousto-optics. In
Chapter 11 it was shown that there is an energy defect in the scattering which
goes into or out of the medium, The critical concept that we use in the case of
cubic nonlinearity is the phased array of susceptibility. This conveniently organizes
‘cubic processes so that various competing processes can be examined, It also
allows an examination of when to expect coupled four-wave mixings. The phased
array is also the object through which energy is exchanged,

13.5 ORGANIZATION

The characteristics described above dictate the organization of the text, It
begins with a traditional discussion of three-wave mixing, concentrating on the
basic nonlinearities, phase matching, and the practical aspects of nonlinear optics.
Other aspects of nonlinear optics, principally third-order phenomena are covered
later. The major chapters are written modularly so that they do not need to be”
read in order. It is useful to read at least some of Chapter 15 before reading
Chapter 14, This involves deferring the details of how the effective
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susceptibilities are computed, but this is advantageous for' the beginner. These
sections cannot be understood without mastering crystal optics and the phase
match discussion of Section 10.4.

The ‘sections that deal with Raman scattering are also modular antl can be
read without reference to the other sections. Chapter 10 is essential to the
understanding of Stokes-anti-Stokes coupling. Stimulated Brillouin is more easily
understood if Chapter 11 is read first. The remaining areas within the nonlinear
optics-sections are handled with the goal of keeping the text as brief as possible.

_ADDITIONAL READING

Hopf, F.A. and Stegeman G.l., Applied Electrodynamics Volume I: Linear
Optics, Wiley, New York, 1985.

Beginning texts

Baldwin, C.G., An Introduction to Nonlinear Optics, Plenum, New York,
1969,

Advanced texts

Bloembergen, N., Nonlinear Optics Benjamin, Reading, Massachusetts, 1965.
Zernike, F. and Midwinter, J.E., Applied Nonlinear Optics, Wiley, New York,

1973, .
shen, Y.R., The Principles of Nonlinear Optics, Wiley, New York, 1984.

PROBLEMS

13.1. Verify that all four-wave mixings can.be written in the form of Eqgs.
(13.11)~-(13.14).

13.2. Identify all possible phased arrays of susceptibility that participate in a
single four-wave mixing process for: (a) total nondegeneracy; (b) complete
frequency degeneracy but no true degeneracy; (c) true degeneracy between the
fields at w, and wy, and also between the fields at w. and wy but otherwise
nondegenerate; and (d) total degeneracy.

Hint: The phased arrays are driven by the squares of the electromagnetlc fields.
Ignore vector and tensors for this exercise. .
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Catalytic
Nonlinearities

When nonlinearities arise from normal coordinates that are far from
resonance, the medium does not absorb light., Light is converted from one
frequency to another without Interchanging energy with the medium and the
medlum functions as an optical catalyst. Catalytic nonlinearities are closely
related to the Pockels effect and the formal development of the equations is
similar, The basic physics of the nonlinearity is that a powerful electromagnetic
field drives the electron far from its rest position so that the nonlinear force
terms of Eqs. (2.10) and (2.14) come into piay. Just as in the Pockels effect,
dipolar quadratic nonlinearities cannot exist in centrosymmetric media, {.e., media
with a center of symmetry, There can be quadrapolar quadratic nonlinearities even
in isotropic media, but these require speclal circumstances to radiate. lInitially we
ignore quadrupoles and concentrate on media without centers of symmetry that
are identified in Table C.1 (copy of Table 8.2) by a nonzero value for the number
of independent components of xjjy.

‘ The physical origins of quadratic nonlinearities lie in the internal structure
and relative positions of the molecules in the lattice. The situation in most cases .
is complicated. One of the simpler cases, and one that is widely met in practice,
is the nonlinearity in materials with tetrahedral structures. These occur in KDP
and its analogues.' The origin of the nonlinearity of KDP is illustrated in Figures
14,1 and 14.2. This type of nonlinearity is frequently encountered in practice. In
Figure 14.1, four atoms are arranged at the corners of a tetahedron. A strong
optical field driving the motion of an electron gives the result shown in Figure
14.2. .

* The analogues of KDP are too numerous to list everywhere in this book. The first
letter can read K, R, C, or A, which stands for potassium, rubidium, cesium, or
ammohium, The second reads D or D*, which stands for dihydrogen or diduterium,
The third letter reads P or A, whk:h stands for phosphate or arsenate. KDP,
potas§ium dihydrogen phosphate, has the chemical formula KH,PO,. These 2m

materials are the most widely used in electro-optics and nonlinear optics. Any . -

qualitative discussion of one of these materials applies to the group as a whole,

7



8 QUADRATIC NONLINEARITIES Chap. 14

(a) ).

E:\
(©

Figure 14.1. The origin of the quadratic nonlinearity in KDP, (a) Electron at
rest in the absence of #n incident optical field. (b) An optical field incident
along the axis connecting the upper two atoms. The electron is deflected
downward by the atoms. (c) If the field is -along the axis connecting the lower
two atoms, the electron is deflected upwards. In (b) and (c) the electron
moves along t,he arc of a circle,

(@ b (c]

) (a (e
&
EF% 0 & 1 _ '

L . — ———— B e ——
Pgy Pgh Ps PsH Psu

Er =0

Figure 14.2. A complete cycle of the incident laser field E¢ = E(w¢) results in’
two cycles of the second harmonic polarization. (a) E¢ is maximum upwards,
Py = P(2w¢) points to the left, For (b) and (d) Ej. is zero and Pgy points to
the right. (c) E¢ is a maximum down and Pgyy again points to left, (e) Begins
next cycle.

When the field is parallel either to the two atoms at the top, or to the two
atoms at the bottom, the electron is forced onto a path that follows an arc of a
circle due to the repulsion from one of the atomic cores. Figure 14.2 shows how
circular motion leads to second harmonic dipole. As the electron moves along the
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arc of a circle, the dipole orthogonal to the field makes two complete cycles for
every cycle of the fundamental. (In the case of second harmonic generation, the
historic nomenclature reads fundamental = laser = a,b and second harmonic = c.)
This second hammonic polarization radiates a second hammonic field polarized
orthogonal to the incident fundamental field, a situation which utilizes skew
elements (e.g., Xj23 = X)) in the nonlinear susceptibility tensor.

14.1 SECOND HARMONIC NONLINEAR TERMS

The general development of second order nonlinearities is somewhat
impenetrable at first, largely because of the complexity of the notation. We start
by dealing with second harmonic generation, which is notationally somewhat easier
than the general case.

Figure 14.3. Spring system diagonal in the principal axis system. The incident
laser field E(wg) and second harmonic polarization fields Pgy can point in
different directions,

We confine our discussion to the second harmonic polarization. The radiated field
at the second harmonic induces polarizations at the laser frequency. We assume
in this section that the second harmonic field is so small that we can neglect
polarizations induced by the second harmonic fields. We relax this assumption in
Section 14.2.

The basic model for the light matter interaction is the electron on a spring
system described in Chapters 2 and 8. It is illustrated in Figure 14.3. When a
single spring constant is assumed, the formal development is not applicable to
monodlinic and triclinic crystals (although the results are qualitatively the same).
The laser field is not, for the moment, taken to be an eigenvector, and is written
as
twgt

Ef(r.t) =-12- (B(ugre ft v cc). (14.1)

The equation of motion for this case is given by Eq. (8.8), namely,



