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PREFACE TO THE ENGLISH EDITION

This work deals with elastic models of crystal defects, a field situated at the boundary
between continuum mechanics and solid state physics.

The understanding of the behaviour of crystal defects has become unavoidable
for studying such processes as anelasticity, internal damping, plastic flow, rupture,
fatigue, and radiation damage, which play a determining role in various fields of mate-
rials science and in top technological areas. On the other hand, the lattice distortion
produced by a crystal defect can be calculated by means of elastic models, at least at
sufficiently large distances from the defect. Furthermore, the interaction of a crystal
defect with other defects and with applied loads is mainly due to the interaction of
their elastic states. This explains the permanent endeavour to improve the elastic
models of crystal defects, e.g. by taking into account anisotropic and non-linear
elastic effects and by combining elastic with atomistic models in order to achieve a
better description of the highly distorted regions near the defects.

This book has grown out of a two-semester course on “‘Continuum Mechanics
with Applications to Solid State Physics” held by the author some ten years ago
at the University of Stutigart, which was an attempt to unify the topic with recent
developments that have made continuum mechanics a highly deductive science. Since
then, the extension of the application area and the development of new computing
techniques have considerably enlarged the field and changed the plan of the work.
However, the stress is still laid on theory and method: the problems solved are illus-
trative and intended to serve as background for approaching more complex or more
specific applications. Moreover, their choice is inevitably influenced by the preference
of the author for subjects to which personal contributions have been brought.

Chapter I concerns the basic concepts and laws of the kinematics, dynamics,
and thermodynamics of deformable continuous media, the linear and non-linear
elastic constitutive equations, as well as the formulation and solving of the boundary-
value problems of linear elastostatics. Special attention is given to anisotropic elasti-
city, to the accurate formulation of boundary-value problems involying infinite domains
and concentrated forces, and to the determination of Green’s tensor function, in
view of the importance of these topics for the simulation of crystal defects.

Chapter II contains a systematic study of the elastic states of single straight
or curvilinear dislocations, of the elastic interactions between single dislocations,
and of moving dislocations. The emphasis lies on the anisotropic elasticity theory
of dislocations, especially on the powerful methods developed during the last ten years
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for the computation of the elastic states of dislocation loops by means of straight
dislocation data.

Chapter III presents the main results obtained so far in describing non-linear
effects in the elastic field of straight dislocations, as well as in the study of the core
configuration of dislocations by using semidiscrete methods.

Chapter 1V is devoted to the linear and non-linear theory of continuous distri-
butions of dislocations and to its application to investigating the influence of dislo-
cations on crystal density and on the low-temperature thermal conductivity of crystals.

Chapter V deals with the modelling of point defects as rigid or elastic inclusions
in an elastic matrix, or as force multipoles. Finally, some of the results available
on the interactions between point defects and other crystal defects are briefly reviewed.

Although the material in the text covers mainly the mathematical theory of
crystal defects, the author has been constantly concerned with emphasizing the
physical significance of the results and some of their possible applications. The
reader can easily enlarge his information in these directions by reference to the stan-
dard books on crystal defects by Cotrtrell [84], Read [275], Friedel [124], Kriner
[190], van Bueren [365], Indenbom [167], Nabarro [258], Hirth and Lothe [162],
or to the review articles by Seeger [286], Eshelby [111], de Wit [385], and Bullough

[50].

Printed jointly with Springer-Verlag, the English edition is a revised and up-dated
version of the Romanian book “Modele elastice ale defectelor cristaline”, published
in 1977 by Editura Academiei. The present edition is supplemented by several subsec-
tions concerning the simulation of crystal dislocations by means of Volterra and Somi-
gliana dislocations, the dislocation loops in anisotropic media, the interaction of crystal
defects, and the flexible-boundary semidiscrete methods, as well as by a review of the
main results published in the last four years.

The author expresses his deep gratitude to Prof. A. Seeger and Prof. E. Kroner
for continuous encouragement to writing this book and for numerous discussions on
the application of continuum mechanics to the simulation of crystal defects. The
author is also greatly indebted to Dr. E. Sods for his valuable detailed criticism of
the manuscript.



CHAPTER [

FUNDAMENTALS OF THE THEORY
OF ELASTICITY

Before broaching the very subject of this chapter, we shall review briefly the basic
elements of vector and tensor calculus that are necessary in the present work. This
will also allow the reader to become familiar with the system of notation used in
the following.

1. Vectors and tensors

1.1. Elements of vector and tensor algebra

We denote by & the three-dimensional Euclidean spece; its elements P, Q, ...
are called points. The translation vector space associated with & is denoted by ¥
and its elements w, v, ... are called vectors.

The scalar product of the vectors u and v is denoted by u-v. The magnitude
of the vector u is the non-negative real number

flall = Vu-u. (.1

Since ¥ is also three-dimensional, any triplet of non-coplanar vectors is a
basis of ¥, and any vector of ¥ can be written as a linear combination of the basis
vectors. A Cartesian co-ordinate frame consists of an orthonormal basis {e;} =
= {e,, e,, €5} and a point O called the origin. Then

e €, =Orm k,m=123, 1.2)
where
1 for k=m
Okm = (1.3)
g {0 for k#m

—— .
is the Kronecker delta. The vector OP = x is called the position vector of the point
P€ &. Clearly, the correspondence between points and their position vectors is
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one-to-one. Therefore, we shall sometimes label points by their position vectors,
referring for conciseness to the point P whose position vector is x as *“the point x”'.

The real numbers u,, u,, ¥3, uniquely defined by the relation
u = u.e;, + uye; + uze, (1.4)
are called the Cartesian components of the vector .
Both direct notation, using only vector and tensor symbols, and indicial nota-
tion, making use of vector and tensor components, will be employed throughout.

Whenever indicial notation is used, the subscripts are assumed to range over the
integers 1, 2, 3, and summation over twice repeated subscripts is implied, e.g.

WV = U0, = Uy, -+ uv, + uv;. (1.5)

From (1.4) and (1.2) we see that the Cartesian components of u can be also
defined by

Uy =M€ (1.6)

The vector product of two vectors u and v is denoted by uxv. In view of (1.4)
we can write

€ X € = Eklmem’ (17)
where €,,,, is the alternator symbol. A direct proof shows that

1 for kim = 123, 231, 312
€rim = 1 for klm = 132,213, 321 (1.8)

0 for any other values of klm.
From (1.4) and (1.7) it follows that
u X v==¢E,, up,.e. (1.9)
We nri)tice that the symbols €, satisfy the identities
8ij Oim On
€ 1€ imn = | Okj Okm Oin | (1.10)

eikleimn = 5km51n - 5kn51m' (111)



1. Vectors and tensors 13

A second-order tensor A is a linear mapping® that assigns to each vector u
a vector

v = Au. (1.12)

We denote by & the set of all second-order tensors defined on ¥". The sum
A + B of two tensors A, BE ¢ is defined by

(A 4+ B)u = Au + Bu, (1.13)
and the product of a tensor A€ & and a real number a by
(xA)u = a(Au). (1.14)

The space & endowed with the composition rules (1.13) and (1.14) is also a vector
space.
The unit tensor 1 and the zero tensor 0 are defined by the relations

lu=u, On=0 for every uevy, (1.15)

where 0 is the zero vector.

The tensor product uv of two vectors u and v is the second-order tensor
defined by

(uv)w = u(v-w) for every we 7" (1.16)
It can be shown that if f, and g,, are two arbitrary bases of #7, then the tensor
products fig,, k, m = 1,2, 3, are a basis of &, which is thus a nine-dimensional

vector space. In particular, the tensor products ee,, k, m =1,2,3, are a basis
of &, and we can write for every A€ ¥

A = A e&m (1.17)

The nine real numbers A,,, uniquely defined by (1.17), are called the Cartesian
components of the tensor A. From (1.17), (1.16), and (1.2), we deduce the relation

Akm = €y (Aem)s (1.18)

which can be considered as an equivalent definition of the tensor components.
In particular, by applying this definition to the unit tensor and taking into account
(1.15), and (1.2), we infer that J,, are the Cartesian components of the unit tensor,
i.e.

1= 6y

1 This definition can still be applied when ¥ is an arbitrary vector space.
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If v = Au, we also have by (1.17) and (1.16)

V= (Akmekem) u= Akmumek’
and hence

Uy = Al (L.19)
The product AB of two tensors A and B is defined by the composition rule

(AB) u = A(Bu) for every ue v,
wherefrom it follows that
(AB)yr, = A By (1.20)
The transpose of the temsor A = A,,ee, is the tensor AT = A,ee,. A
second-order tensor A is called symumnetric if AT = A, and skew or antisymmetric
if AT = —A. By defining

symA = 2 (A -+ AT), skw A = (A — A7)

as the symmetric part and the skew part of an arbitrary second-order tensor A,
we can always write

A = sym A -} skw A.
Given any skew tensor Q, there exists a unique vector @ such that
Qu = o X u for every ue?¥. (1.21)

Indeed, from (1.21), (1.9), and (1.11), it results that

a)i = — %Eijkgjk’ QU = ——Gijkwk. (1.22)

The vector o, uniquely defined by (1.22),, is called the axial vecror of the skew
tensor Q.
* The trace of A€ & is the real number

tr A=A, (1.23)

The passing from A to tr A is called (tensor) contraction. It is easily seen that
trAT =trA, tr(AB)= tr(B;A). (1.24)
The inner product A-B of two second-order tensors A and B is the real number

A-B = tr(AB?) = Ay Bims (1.25)
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while the magnitude of A is the real number

Al =VA-A =V AumAim - (1.26)
The determinant det A of the tensor A is defined by

det A = det [4,,], (1.27)

where [4,,,] denotes the matrix of the Cartesian components of A. From this defi-
nition and some well-known rules of matrix algebra, we see that for every A, BE Z:

det AT = det A, det(AB) = (det A)(det B). (1.28)

If det A # 0, there exists a unique inverse linear transformation A~ of ¥~ on ¥~

such that if v =Au then u= A~!v for every u, ve¥". From these two equations and
(1.15), it follows that

AAl=A"A=1 (1.29)

The tensor A~1is called the inverse tensor of A.
A tensor Q is said to be orthogonal if

QQT =1, Qkamp = 5km' (130)

By (1.30) and (1.28) we have (det Q)? = 1, det Q = 1. Hence, every orthogonal
tensor admits an inverse and, by (1.30);, Q™1 = QT. The set of all orthogonal ten-
sors forms a group, called the orthogonal group ; the set of all orthogonal tensors
with determinant equal to +1 forms a subgroup of the orthogonal group, called the
proper orthogonal group.

A tensor of n'th order is a linear mapping that assigns to each vector ue ¥~
a tensor of (n — 1)'st order, n > 3. Combining this definition with that of a second-
order tensor given above allows the itcrative introduction of tensors of an arbitrary
order. We denote by .2, the space of all tensors of order n.

The tensor product w,u, ... u, is a tensor of n’th order defined asa linear
mapping of ¥ in .Z, _, by the relation

(wu, ..., _0)v=muMW, ...u, ,(u,.v) for every v€ ¥~

It can be shown that the tensor products e,, ... e, k;, .. -, k,=1,2,3, form a
basis of .#,. Hence %, is 3"-dimensional, and every tensor @€ &, can be written
uniquely in the form

D=0 e .- e (1.31)

where &, ..., are the Cartesian components of ®. Moreover, if ¥ = ®u, the n

Yioknor = Py cknmsbnldicn:
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Let us consider now the transformation rules of vector and tensor components

when passing from the orthonormal basis {e,} to another orthonormal basis {e;}.
Denote by

qkr = ek'e: - cos(ek’ e;): k) r= 1: 2; 39 (1-32)

the direction cosines of the unit vectors e, with respect to the unit vectors e,. By
(1.4) and (1.6), we obviously have

& = g€, € = G, (1.33)
wherefrom

Dires = 5rs’ rdir = akl'

Substituting successively (1.33) into the relation
U = U = u;e;9

and taking into account the unicity of Cartesian components, we obtain the trans-
formation rule of the vector components

U = Gty Ur = Jiethp (1.34)

In a similar way, the transformation rule of the components of a second-order
tensor A reads

Akm = qqumsA;s’ A;s = qqumsAkm’ (1'35)

the generalization for higher-order tensors being evident.
A real number A is said to be a principal or characteristic value of a second-
order tensor A if there exists a unit vector m such that

An = /n; (1.36)

in this case n is called a principal direction corresponding to 4.

It can be shown (see, e.g. Halmos [151], Sect. 79) that if A is a symmetric
second-order tensor, then there exists an orthonormal basis n;, m,, 0, and three
(not necessarily distinct) principal values 4, Ag, 43 of A such that

3
A = Z lknkl‘lk. (1-37)
k=1

If 2, = A,, equation (1.37) reduces to
A = Anm + 4,1 —mny). (1.37a)
Finally, if 4, = A, = 43, then
A=11L (1.37b)
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This theorem, called the spectral theorem, is of great importance for the elasticity
theory. For instance, it implies the existence of the principal values of the strain
tensor and of the Cauchy stress tensor for these are symmetric second-order tensors.

1.2. Elements of vector and tensor analysis

In this section we choose a fixed Cartesian co-ordinate frame in &, with origin O
and orthonormal basis {e,, e,, e;}. Let (x,, x5, x3) denote the Cartesian co-ordinates

—
of a point P€ & with respect to this frame. The position vector OP = x can be
written as

X = xkek.

For the sake of simplicity we denote the partial derivative 0(.)/0x, by ()4

Let D be an open set in &. A function ® that assigns to each point P€ D
a scalar, vector, or tensor ®(P) is called scalar, vector, or tensor field on D, respective-
ly. A vector or tensor field is said to be of class C* on D if its components with

respect to the fixed co-ordinate frame are continuous on D together with their par-
tial derivatives up to the »’th order.

—

Let ® be a scalar, vector, or tensorfield on &. Denoting ||OP) = r, we shall
write ®(P) = O(r") as r — o, or ®(P)= o(r") as r — oo, according to whether
the expression |r~"®(P)|} is bounded or tends to zero as r — oo. The same system
of notation will be used to describe analogous properties for r - 0.

Consider a scalar field F of class C*. The gradient of F is the vector field

grad F=F, e, (1.38)

Let u be a vector field of class C* on D. The gradient of u is the second-order
tensor field?

grad u = u; , €.e,, (1.39)
the curl of u is the vector field

curl u =€, u, e, (1.40)
and the divergence of u is the scalar field
divu = tr(grad w) = u,, .. (1.41)

These operators, as well as those subsequently introduced in this section, can be
also defined as linear mappings between scalar, vector, or tensor spaces (see, €.g.
Gurtin [150], Sect. 4), and hence they are independent of the co-ordinate system.

1 Note that we use throughout the so-called right-hand gradients, curls, and divergences
of vector and tensor fields (cf. Malvern [227], Sect. 2.5, Jaunzemis [433], p. 88).
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