VITOCHONDRIAL CENES

MITOCHONDRIAL GENES

Edited by

Piotr Slonimski

Centre de Génétique Moléculaire du CNRS

Piet Borst

University of Amsterdam

Giuseppe Attardi

California Institute of Technology

Cold Spring Harbor Laboratory 1982

COLD SPRING HARBOR MONOGRAPH SERIES

The Lactose Operon

The Bacteriophage Lambda

The Molecular Biology of Tumour Viruses

Ribosomes

RNA Phages

RNA Polymerase

The Operon

The Single-Stranded DNA Phages

Transfer RNA:

Structure, Properties, and Recognition

Biological Aspects

Molecular Biology of Tumor Viruses, Second Edition:

DNA Tumor Viruses

RNA Tumor Viruses

The Molecular Biology of the Yeast Saccharomyces:

Life Cycle and Inheritance

Metabolism and Gene Expression

Mitochondrial Genes

MITOCHONDRIAL GENES

© 1982 by Cold Spring Harbor Laboratory Printed in the United States of America Book design by Emily Harste

Library of Congress Cataloging in Publication Data

Main entry under title:

Mitochondrial genes.

(Cold Spring Harbor monograph series; 12)

Papers presented at the meeting held in Cold Spring

Harbor, N.Y. in May 1981.

Includes index.

1. Mitochondria—Congresses. 2. Extrachromosomal DNA

Congresses. I. Slonimski, Piotr. II. Borst, Piet.

III. Attardi, Giuseppe. IV. Series.

QH603.M5M56

574.87'342

81-68894

ISBN 0-87969-145-X

AACR2

All Cold Spring Harbor Laboratory publications are available through booksellers or may be ordered directly from Cold Spring Harbor Laboratory, Box 100, Cold Spring Harbor, New York 11724.

SAN 203-6185

Preface

In the last few years, powerful new DNA, RNA, and protein technologies have been introduced. Combined with a refined genetic analysis, these technologies have promoted rapid developments in the investigation of the mitochondrial genome in a variety of organisms and have placed this system at the forefront of modern biological research. The Mitochondrial Genes meeting held at Cold Spring Harbor Laboratory in May 1981 testified to the extraordinary progress made in the understanding of the mitochondrial genetic system since the discovery, about 30 years ago, of the yeast "petite" mutation by Boris Ephrussi, to whom this book is dedicated, and his collaborators.

The 47 papers included in this volume cover a wide range of topics, including the mitochondrial genetic code, mitochondrial DNA replication, gene organization and expression, nuclear-mitochondrial interactions, and evolution of mitochondrial DNA. It thus provides a comprehensive account of the current knowledge concerning mitochondrial genes and a perspective of future directions of research in the field.

We wish to thank the National Institutes of Health and the National Science Foundation for financial support of the meeting and to acknowledge the invaluable help of Gladys Kist and her staff in organizing the meeting. We also thank Nancy Ford, Director of Publications, Chris Nolan, Dorothy Brown, and Annette Kirk for their expert and patient collaboration in the editing of this book. Finally, we gratefully acknowledge the interest and enthusiastic support of James Watson.

P. Slonimski

P. Borst

G. Attardi

Meeting Participants

Agsteribbe, E., State University, Groningen, The Netherlands Ainley, Mike, University of Texas, Dallas Anderson, Stephen, Medical Research Council, Cambridge, England Arnberg, A.C., State University at Groningen, The Netherlands Attardi, Giuseppe, California Institute of Technology, Pasadena Bandlow, Wolfhard, University of Munich, Federal Republic of Germany Belcour, Leon, Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France Bendich, Arnold, University of Washington, Seattle Berlani, Roberta, Columbia University, New York, New York Bernardi, Giorgio, Institut de Recherche en Biologie Moléculaire, Paris, France Bertrand, H., University of Regina, Canada Birky, William C., Ohio State University, Columbus Blanc, Hughes, Stanford University School of Medicine, California Boer, P.H., Genetic Institute, Amsterdam, The Netherlands Bogenhagen, Daniel, Carnegie Institution of Washington, Baltimore, Maryland Bonen, Linda, University of Amsterdam, The Netherlands Bonitz, Susan, Columbia University, New York, New York Borst, Piet, University of Amsterdam, The Netherlands Breitenbach, Michael, Institut für Allgemein Biochemie, Wien, Austria Brown, Gregory, State University of New York, Stony Brook Burke, John, Massachusetts Institute of Technology, Cambridge Butow, R.A., University of Texas, Dallas Cann, Rebecca, University of California, Berkeley Carignani, Giovanna, Istituto di Chimica Biologica, Padova, Italy Castora, Frank, State University of New York, Stony Brook Ching, Edwin P., Rockefeller University, New York, New York Claise, M.L., Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France Clark-Walker, G.D., Australian National University, Canberra Clayton, David A., Stanford University, California

¥

Colson, Anne M., University of Louvain, Louvain-La-Neuve, Belgium

Coruzzi, Gloria, Rockefeller University, New York, New York

Cottrell, Stephen, Brooklyn College, New York

Cummings, Donald, University of Colorado, Denver

Dale, Roderick, Yale University, New Haven, Connecticut

Davies, R. Wayne, University of Essex, Colchester, England

Dayan, Jean, Hartsdale, New York

De Francesco, Laura, City of Hope Research Center, Duarte, Colorado

De Vries, H., University of Groningen, The Netherlands

De Zamaroczy, Miklos, Institute of Molecular Biology, Paris, France

Del Giudice, Luigi, International Institute of Genetics/Biophysics, Napoli, Italy

Deters, Donald, University of Texas, Austin

Dieckmann, Carol, Columbia University, New York, New York

Doersen, Claus J., California Institute of Technology, Pasadena

Dubin, Donald T., Rutgers Medical School, Piscataway, New Jersey

Dujardin, G., Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France

Dujon, Bernard, Harvard University, Cambridge, Massachusetts

Englund, Paul, Johns Hopkins University School of Medicine, Baltimore, Maryland

Esser, Karl, Ruhr Universität Bochum, Germany

Farrelly, Frances, University of Texas, Dallas

Faugeron-Fonty, Godeleine, Institute of Molecular Biology, Paris, France

Fauron, C.M.R., University of Utah, Salt Lake City

Ferris, Stephen, University of California, Berkeley

Finzi, Eric, Mt. Sinai School of Medicine, New York, New York

Fox, Thomas, University of Basel, Switzerland

Freeman, K.B., McMaster University, Hamilton, Canada

Frontali, Laura, University of Rome, Italy

Fukuhara, M. Bolotin, Laboratory of General Biology, Orsay, France

Fukuhara, Hiroshi, Institut Curie, Orsay, France

Gelfand, Robert, Purdue University, West Lafayette, Indiana

George, Matthew, San Diego Zoo, California

Gillham, Nicholas, Duke University, Durham, North Carolina

Gollub, Edith, Barnard College, New York, New York

Goltz, Sherry, Rockefeller University, New York, New York

Goursot, Regina, Institute of Research/Molecular Biology, Paris, France

Grant, David, St. Louis University, Missouri

Gray, M.W., Dalhousie University, Halifax, Nova Scotia, Canada

Greenberg, Barry, University of North Carolina, Chapel Hill

Grivell, L.A., University of Amsterdam, The Netherlands

Grossman, Lawrence, University of Michigan, Ann Arbor

Hajduk, Stephen, Johns Hopkins University School of Medicine, Baltimore, Maryland

Halbreich, A., Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France

Hanson, Deborah, Indiana University, Bloomington

Hare, James, Portland, Oregon

Hauswirth, William W., University of Florida, Gainesville

Heckman, Joyce, Indiana University, Bloomington

Hensgens, L.A.M., University of Amsterdam, The Netherlands

Howell, Neil, Sidney Farber Cancer Institute, Boston, Massachusetts

Hudson, Alan, University of Texas, Dallas

Hyman, Bradley, University of Wisconsin, Madison

Jacq, C., Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France

Jayaraman, J., Madurai Kamaraj University, Madurai, India

Jubier, M.F., Rockefeller University, New York, New York

Kaudewitz, F., Genetic Institute, University of Munich, Germany

Kearsey, S.E., Genetics Laboratory, Oxford, England

Keyhani, E., University of Pennsylvania Medical School, Philadelphia

Kahn, Nasim, Brooklyn College, New York

Kidane, Gretachew, University of California, Los Angeles

Knight, Jeffery, Mount Holyoke College, South Hadley, Massachusetts

Koike, Katsuro, Japanese Foundation for Cancer Research, Tokyo

Kruszeweska, Anna, Polish Academy of Sciences, Warsaw

Kumar, C.C., Massachusetts Institute of Technology, Cambridge

Kuntzel, Hans, Max-Planck-Institut für Experimentelle Medizin, Göttingen, Federal Republic of Germany

Laipis, Philip, University of Florida, Gainesville

Lambowitz, Alan, St. Louis University Medical School, Missouri

Lansman, Robert, University of Georgia, Athens

Lazowska, J., Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France

Leaver, C.J., University of Edinburgh, Scotland

Li, May K., Columbia University, New York

Liebhard, Aurora B., Center for Cellular Physics, Universidad Nacional Autonoma de Mexico, Mexico

Linnane, A.W., Monash University, Clayton, Australia

Macino, Giuseppe, University of Rome, Italy

Mahler, Henry R., Indiana University, Bloomington

Mangin, M., Institute of Research in Molecular Biology, Paris, France

Marban, S. Lee, Yale University School of Medicine, New Haven, Connecticut

Marini, Joan, Johns Hopkins School of Medicine, Baltimore, Maryland

Marotta, Renzo, Institute of Research in Molecular Biology, Paris, France

Martin, Nancy, University of Texas, Dallas

Martin, Robert, Institute of Molecular and Cell Biology, Strasbourg, France

McKee, Edward, University of Connecticut, Farmington

Michaelis, Georg, University of Biolefeld, Federal Republic of Germany

Montoya, Julio, California Institute of Technology, Pasadena

Mounolou, Jean, University of Texas, Dallas

Nass, Margit, University of Pennsylvania Medical School, Philadelphia

Netter, P., Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France

Newmark, Peter, Nature Publishing Co., New York, New York

Osinga, K.A., University of Amsterdam, The Netherlands

Pajot, P., Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France

Pepe, Gabriella, Istituto Chimica Biolgica, Bari, Italy

Perlman, Philip S., Ohio State University, Columbus

Pollack, Y., Hebrew University Hadassah Medical School, Jerusalem, Israel

Power, Scott D., University of Connecticut, Farmington

xii

Poyton, Robert, University of Connecticut, Farmington

Rabinowitz, Murray, University of Chicago, Illinois

RajBhandary, Uttam, Massachusetts Institute of Technology, Cambridge

Rickwood, David, University of Essex, Colchester, England

Roe, Bruce, Kent State University, Ohio

Saccone, Cecilia, Istituto Chimica Biologica, Bari, Italy

Sager, Ruth, Sidney Farber Cancer Institute, Boston, Massachusetts

Scheyen, R.J., Genetisches Institut, Munich, Federal Republic of Germany

Sena, Elissa, Case Western Reserve University, Cleveland, Ohio

Shade, Rosemary, University of Georgia, Athens

Simpson, Melvin, State University of New York, Stony Brook

Simpson, Larry, University of California, Los Angeles

Simpson, Agda, University of California, Los Angeles

Slonimski, Piotr, Centre de Génétique du CNRS, Gif-sur-Yvette, France

Solus, Joseph, Yale University School of Medicine, New Haven, Connecticut

Stanbridge, Eric, University of California, Irvine

Stepien, Piotr, Warsaw University, Poland

Strausberg, Robert, Southern Methodist University, Dallas, Texas

Suyama, Yoshitaka, University of Pennsylvania, Philadelphia

Tabak, H.F., University of Amsterdam, The Netherlands

Tait, Andrew, University of Edinburgh, Scotland

Thalenfeld, Barbara, Columbia University, New York, New York

Turner, Geoffrey, University of Bristol, England

Tzagoloff, Alex, Columbia University, New York, New York

Van den Boogaart, P., State University Groningen, The Netherlands

Van Etten, Richard, Stanford University, California

Wakabayashi, Kazuhiko, University of Yamanashi, Japan

Walberg, Mark, Stanford University, California

Wallace, Douglas, Stanford University, California

Werner, Sigurd, Institut Physiologische Chemie, Munich, Federal Republic of Germany

Wilkie, David, University College London, England

Wolf, Klaus, Genetisches Institut, Munich, Federal Republic of Germany

Wolstenholme, David R., University of Utah, Salt Lake City

Yin, Samuel, Massachusetts Institute of Technology, Cambridge

Zassenhaus, H. Peter, University of Texas, Dallas

Contents

Preface, vii Meeting Participants, ix

Boris Ephrussi and the Early Days of Cytoplasmic Inheritance in Saccharomyces, 1 H. Roman

Animal Mitochondrial Genes

Comparison of the Human and Bovine Mitochondrial Genomes, 5 S. Anderson, A. T. Bankier, B. G. Barrell, M. H. L. deBruijn, A. R. Coulson, J. Drouin, I. C. Eperon, D. P. Nierlich, B. A. Roe, F. Sanger, P. H. Schreier, A. J. H. Smith, R. Staden, and I. G. Young

Mammalian Mitochondrial tRNAs: A Modified Nucleotide 3' to the Anticodon May Modulate Their Codon Response, 45

- B. A. Roe, J. F. H. Wong, E. Y. Chen, P. W. Armstrong, A. Stankiewicz, D.-P. Ma, and J. McDonough
- A Comprehensive View of Mitochondrial Gene Expression in Human Cells, 51
- G. Attardi, P. Cantatore, A. Chomyn, S. Crews, R. Gelfand, C. Merkel, J. Montoya, and D. Ojala

- Expression of the Mouse Mitochondrial DNA Genome, 73
- R. A. Van Etten, N. L. Michael, M. J. Bibb, A. Brennicke, and D. A. Clayton
- 3' Termini of Mammalian and Insect Mitochondrial rRNAs, 89
- D. T. Dubin, C. C. HsuChen, K. D. Timko, T. M. Azzolina, D. L. Prince, and J. L. Ranzini
- Nucleotide Sequences within the A+T-rich Region and the Large-rRNA Gene of Mitochondrial DNA Molecules of *Drosophila yakuba*, 99
- J. M. Goddard, C. M. R. Fauron, and D. R. Wolstenholme
- A System to Study Human Mitochondrial Genes: Application to Chloramphenicol Resistance, 105
- D. C. Wallace, N. A. Oliver, H. Blanc, and C. W. Adams
- Genetic Basis of Chloramphenicol Resistance in Mouse and Human Cell Lines, 117
- S. E. Kearsey and I. W. Craig
- Rat Mitochondrial DNA: Evolutionary Considerations Based on Nucleotide Sequence Analysis, 121
- C. Saccone, C. De Benedetto, G. Gadaleta, C. Lanave, G. Pepe, G. Rainaldi, E. Sbisà, P. Cantatore, R. Gallerani, C. Quagliariello, M. Holtrop, and A. M. Kroon
- Cytoplasmic and Nuclear Inheritance of Erythromycin Resistance in Human Cells, 129
- C.-J. Doersen and E. J. Stanbridge
- Mitochondrial DNA and Evolution in *Peromyscus*: A Preliminary Report, 133
- R. A. Lansman, J. F. Shapira, C. Aquadro, S. W. Daniel, and J. C. Avise
- Rapid Variation in Mammalian Mitochondrial Genotypes: Implications for the Mechanism of Maternal Inheritance, 137
- W. W. Hauswirth and P. J. Laipis
- A New Mitochondrial Topoisomerase from Rat Liver That Catenates DNA, 143
- F. J. Castora, R. Sternglanz, and M. V. Simpson

Yeast Mitochondrial Genes

- Role of Introns in the Yeast Cytochrome-b Gene: Cis- and Trans-acting Signals, Intron Manipulation, Expression, and Intergenic Communications, 155
- C. Jacq, P. Pajot, J. Lazowska, G. Dujardin, M. Claisse, O. Groudinsky, H. de la Salle, C. Grandchamp, M. Labouesse, A. Gargouri, B. Guiard, A. Spyridakis, M. Dreyfus, and P. P. Slonimski
- Regulatory Interactions between Mitochondrial Genes: Expressed Introns-Their Function and Regulation, 185
- H. R. Mahler, D. K. Hanson, M. R. Lamb, P. S. Perlman, P. Q. Anziano, K. R. Glaus, and M. L. Haldi
- Transcripts of Yeast Mitochondrial DNA: Processing of a Split-gene Transcript and Expression of RNA Species during Adaptation and Differentiation Processes, 201
- R. J. Schweyen, S. Francisci, A. Haid, R. Ostermayr, G. Rödel, C. Schmelzer, R. Schroeder, B. Weiss-Brummer, and F. Kaudewitz
- Structure of the Apocytochrome-b Gene and Processing of Apocytochrome-b Transcripts in Saccharomyces cerevisiae, 213
- C. L. Dieckmann, S. G. Bonitz, J. Hill, G. Homison, P. McGraw, L. Pape, B. E. Thalenfeld, and A. Tzagoloff

RNA Processing in Yeast Mitochondria, 225

- L. A. Grivell, L. A. M. Hensgens, K. A. Osinga, H. F. Tabak, P. H. Boer, J. B. A. Crusius, J. C. van der Laan, M. de Haan, G. van der Horst, R. F. Evers, and A. C. Arnberg
- varl Determinant Region of Yeast Mitochondrial DNA, 241
- R. A. Butow, F. Farrelly, H. P. Zassenhaus, M. E. S. Hudspeth, L. I. Grossman, and P. S. Perlman
- Nucleotide Sequence of the Small Ribosomal RNA Gene from the Mitochondria of Saccharomyces cerevisiae, 255
- F. Sor and H. Fukuhara
- Identification and Characterization of a Yeast Mitochondrial Locus Necessary for tRNA Biosynthesis, 263
- N. C. Martin, K. Underbrink-Lyon, and D. L. Miller
- Evolutionary Origin and the Biological Function of Noncoding Sequences in the Mitochondrial Genome of Yeast, 269
- G. Bernardi

- Replicator Regions of the Yeast Mitochondrial DNA Active In Vivo and in Yeast Transformants, 279
- H. Blanc and B. Dujon
- Transcriptional Initiation of Yeast Mitochondrial RNA and Characterization and Synthesis of Mitochondrial RNA Polymerase, 295
- D. Levens, T. Christianson, J. Edwards, A. Lustig, B. Ticho, J. Locker, and M. Rabinowitz
- Mitochondrial Translation Products in Nuclear Respiration-deficient pet Mutants of Saccharomyces cerevisiae, 311
- G. Michaelis, G. Mannhaupt, E. Pratje, E. Fisher, J. Naggert, and E. Schweizer
- Nuclear and Mitochondrial Informational Suppressors of box3 Intron Mutations in Saccharomyces cerevisiae, 323
- A. Kruszewska
- Expression of the Mitochondrial Genes in Saccharomyces cerevisiae: Analysis of Translation and Transcription Products in Repressed and Derepressed Cells, 327
- L. Frontali, M. Agostinelli, G. Baldacci, C. Falcone, and E. Zennaro
- Mitochondrial Transmission Genetics: Replication, Recombination, and Segregation of Mitochondrial DNA and Its Inheritance in Crosses, 333 C. W. Birky, Jr., A. R. Acton, R. Dietrich, and M. Carver
- Size Diversity and Sequence Rearrangements in Mitochondrial DNAs from Yeasts, 349
- G. D. Clark-Walker and K. S. Sriprakash
- Schizosaccharomyces pombe: A Short Review of a Short Mitochondrial Genome, 355
- K. Wolf, B. Lang, L. Del Giudice, P. Q. Anziano, and P. S. Perlman

Mitochondrial Genes of Filamentous Fungi

- Neurospora crassa Mitochondrial tRNAs and rRNAs: Structure, Gene Organization, and DNA Sequences, 361
- S. Yin, J. Burke, D. D. Chang, K. S. Browning, J. E. Heckman, B. Alzner-DeWeerd, M. J. Potter, and U. L. RajBhandary

Structural and Functional Analyses of the Genes for Subunit II of Cytochrome aa₃ and for a Dicyclohexylcarbodiimide-binding Protein in Neurospora crassa Mitochondrial DNA, 375

P. van den Boogaart, J. Samallo, S. van Dijk, and E. Agsteribbe

Mitochondrial RNA Splicing in Neurospora crassa, 381

G. Garriga, R. A. Collins, D. M. Grant, A. M. Lambowitz, and H. Bertrand

Mitochondrial Genes in Aspergillus, 391

H. Küntzel, H. G. Köchel, C. M. Lazarus, and H. Lünsdorf

Mosaic Genes and Unidentified Reading Frames That Have Homology with Human Mitochondrial Sequences Are Found in the Mitochondrial Genome of Aspergillus nidulans, 405

R. W. Davies, C. Scazzocchio, R. B. Waring, S. Lee, E. Grisi, M. McPhail Berks, and T. A. Brown

Interspecies Variation and Recombination of Mitochondrial DNA in the Aspergillus nidulans Species Group and the Selection of Species-specific Sequences by Nuclear Background, 411

G. Turner, A. J. Earl, and D. R. Greaves

Does Senescence in *Podospora anserina* Result from Instability of the Mitochondrial Genome?, 415

L. Belcour, O. Begel, A.-M. Keller, and C. Vierny

Mitochondrial Genes of Protozoa

Replication of Kinetoplast DNA, 423

P. T. Englund, S. L. Hajduk, J. C. Marini, and M. L. Plunkett

Sequence Organization of Maxicircle Kinetoplast DNA from Leishmania tarentolae, 435

L. Simpson, A. M. Simpson, T. W. Spithill, and L. Livingston

Replication Mechanism of Mitochondrial DNA from *Paramecium aurelia*: Sequence of the Cross-linked Origin, 441

D. J. Cummings and A. E. Pritchard

Native and Imported tRNAs in *Tetrahymena* Mitochondria: Evidence for Their Involvement in Intramitochondrial Translation, 449 Y. Suyama

Mitochondrial Genes of Plants

Mitochondrial Genes and Cytoplasmically Inherited Variation in Higher Plants, 457

C. J. Leaver, B. G. Forde, L. K. Dixon, and T. D. Fox

Structure of Plant Mitochondrial DNAs, 471 R. M. K. Dale

Plant Mitochondrial DNA: The Last Frontier, 477 A. J. Bendich

Mitochondrial Ribosomal RNAs of *Triticum aestivum* (Wheat): Sequence Analysis and Gene Organization, 483

M. W. Gray, L. Bonen, D. Falconet, T. Y. Huh, M. N. Schnare, and D. F. Spencer

Subject Index, 489

Boris Ephrussi and the Early Days of Cytoplasmic Inheritance in Saccharomyces

Herschel Roman

Department of Genetics, SK-50 University of Washington Seattle, Washington 98195

This volume on mitochondrial genes is dedicated to the memory of Boris Ephrussi,¹ whose pioneering investigations of cytoplasmic inheritance in yeast set the stage for what is now a rapidly expanding area of molecular biology. I was fortunate to spend 1952–1953 in his laboratory, when he and his students were preoccupied with understanding the petite mutation, so called because its small-colony phenotype was expressed when mutant cells were grown on solid medium. The small size was due to a respiratory deficiency of the mutant cells. One of the students, Piotr Slonimski, concerned himself with the biochemistry of the petite mutation while Ephrussi was working out the genetics and physiological aspects of petiteness—the same Piotr Slonimski who is an editor of this volume. He and his collaborators have been the principal contributors to the theory of the structure and function of yeast mitochondrial DNA (mtDNA) and of its relation to petiteness.

INHERITANCE OF THE PETITE PHENOTYPE

The first evidence that the original petite mutation was cytoplasmic in its inheritance was reported in 1949 (Ephrussi et al. 1949b). Mutant cells, when mated with normal cells, gave a normal diploid; upon sporulation, this diploid produced asci in which all four spores were generally normal. Repeated backcrosses to the mutant gave the same result. Thus, since a 2:2 segregation would be expected if the mutation were nuclear in origin, it was concluded that the mutation was in fact cytoplasmic.

The petite story is an example of the unexpected discovery and the logical analysis of its meaning. When he began working with yeast, Ephrussi chose the bactericidal agent acriflavine as a possible specific mutagen because of its known interaction with nucleic acid. His expectation was realized when the preliminary experiment revealed that acriflavine induced in growing cultures a massive transformation to the petite

¹Ephrussi made significant contributions in three quite separate areas of research. For a summary of his principal achievements, see Roman (1980).

state; i.e., most of the cells, when plated on solid medium, exhibited the small-colony phenotype. The high rate of mutation was surprising, as was the stability of the mutant: It did not revert to the normal phenotype. These were unusual characteristics for a gene mutation; so too was the fact that the small-colony phenotype occurred spontaneously with an unusually high frequency compared with those of known gene mutations in other organisms. It was fortunate that the yeast was capable of growing on either fermentable or nonfermentable substrates. Otherwise, of course. the petite mutations would have been lethal. Thus, the first impression was either that acriflavine was an unusual mutagen or that the petite mutation was exceptional (Ephrussi et al. 1949a). The petite mutation was thought to result from a loss of autoreproducing cytoplasmic particles (Ephrussi et al. 1949b). It was further hypothesized that these particles may be identical with the large cytoplasmic granules carrying cytochrome oxidase and corresponding to mitochondria (Slonimski and Ephrussi 1949).

The fact that the petite phenotype disappeared in the diploid in matings with normals and did not reappear in the haploid progeny was itself quite fortuitious. Ephrussi et al. (1955) found another type of petite, indistinguishable in ordinary tests from the first, that in matings with normals gave diploids in which the frequency of petites, although more or less specific for a given parentage, varied over a wide range and sometimes approached 100%. This type of petite was called suppressive, since the normal phenotype was suppressed when the two were mated. The results obtained in crosses with a suppressive petite were quite different from those obtained with a neutral petite, as the first type came to be called. Thus, the interpretation of the results of crosses would not have been as straightforward if a suppressive petite had been encountered at the start.

The paper citing genetic evidence in favor of the cytoplasmic nature of the petite (Ephrussi et al. 1949b) was met with a certain reserve. There were several reasons for this lack of appreciation. First, yeast was unfamiliar to geneticists, and its rules of inheritance were suspect. Gene conversion was a controversial issue that added to the idea that yeast was not a reliable genetic organism. Second, cytoplasmic inheritance itself was regarded as an oddity, being confined to such examples as plastids in plants and the killer factor in *Paramecium* (see Ephrussi 1951). Third, it was thought by many that the cytoplasm was under the control of the nucleus and that all phenomena attributed to cytoplasmic inheritance could be explained if the actions of nuclear genes were fully understood.

The next important finding in yeast that bore on the nucleus/cytoplasm argument was again made in Ephrussi's laboratory (Chen et al. 1950) with the discovery of a spontaneously occurring petite that proved to be the result of a nuclear gene mutation. A mating between this petite and a normal cell gave a normal diploid which, upon sporulation, gave the two

phenotypes in the 2:2 ratio expected of Mendelian segregation. Moreover, when the segregational petite was mated with the neutral petite, the ensuing diploid was normal in phenotype and the asci again exhibited the 2:2 segregation. This was interpreted to mean that the neutral petite bore a wild-type nuclear gene and was defective in its cytoplasm, whereas the segregational petite was mutant for the wild-type gene but carried the normal cytoplasmic factor. The diploid from the mating was therefore heterozygous for the mutant gene and had a normal cytoplasm.

THE SUPPRESSIVE PETITE

The third and last petite phenotype that was found in Ephrussi's laboratory was the suppressive petite (Ephrussi et al. 1955) referred to earlier. When matings were made between the suppressive petite and a normal and the diploid cells were sporulated immediately, asci of two types were obtained: those for which the four spores gave rise to cultures that were all normal and those which produced cultures that were all petite. When the diploids were grown for several generations, only asci of the first type were obtained.

It was first considered that the suppressive petite consisted of two types of cells, those which were like the neutral petite and those which were 100% suppressive, i.e., totally efficient in replacing the normal cytoplasmic factor. This hypothesis could account for the sporulation results if it were assumed that the suppressive factor took some time in replacing the normal factor. Thus, some diploid cells still had the capacity for sporulation (petite diploids do not sporulate) but produced only petite spore cultures. A simple test showed that this hypothesis was wrong. On plating a petite that was 50% suppressive, one would expect to obtain 50% neutrals and 50% total suppressives. This proved not to be the case. Instead, subcloning a suppressive petite gave again the same average amount of suppressiveness but, in addition, gave an array of subclones with different degrees of suppressiveness (Ephrussi and Grandchamp 1965; Ephrussi et al. 1966). It became obvious that, although there were three general classes of petites-the nuclear, the neutral, and the suppressive-all with identical phenotypes as determined by the methods then available, there was in fact a much larger number, if the different degrees of suppressiveness are evidence of different molecular (DNA) explanations. One such explanation is given for a highly suppressive strain by Blanc and Dujon (1980). (It also became clear that a large number of nuclear genes can mutate to produce a respiratory-deficient phenotype and that several of these mimic the cytoplasmic petite.)

It is a curious fact that even in the later papers (cited above) by Ephrussi and his collaborators, no mention is made of mtDNA as a possible site of the petite mutation. Although he could not have been oblivious of the