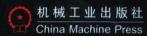
模式识别

(英文版·第2版)

PATTERN RECOGNITION


SECOND EDITION

SERGIOS THEODORIDIS KONSTANTINOS KOUTROUMBAS

(希腊)

Sergios Theodoridis Konstantinos Koutroumbas

模式识别

(英文版·第2版)

Pattern Recognition

(Second Edition)

江苏工业学院图书馆 藏。书、章

Konstantinos Koutroumbas

Z106833 北京信息工程学院图书馆

Sergios Theodoridis and Konstantinos Koutroumbas: Pattern Recognition, Second Edition (ISBN: 0-12-685875-6).

Original English language edition copyright © 2003 by Elsevier Science (USA).

All rights reserved.

Authorized English reprints copyright © 2003 by Elsevier (Singapore) Pte Ltd.

本书仅限于中华人民共和国境内(不包括中国香港、澳门特别行政区和中国台湾)销售发行。

版权所有, 侵权必穷。

本书版权登记号: 图字: 01-2003-5834

图书在版编目(CIP)数据

模式识别(英文版・第2版)/(希腊)西奥多里蒂斯(Theodoridis, S.)等著.-北京: 机械工业出版社、2003.9

(经典原版书库)

书名原文: Pattern Recognition, Second Edition

ISBN 7-111-12767-6

I. 模… II. 西… III. 模式识别-英文 IV. TP391.4

中国版本图书馆CIP数据核字(2003)第068445号

机械工业出版社(北京市西城区百万庄大街22号 邮政编码 100037)

责任编辑: 迟振春

北京昌平奔腾印刷厂印刷・新华书店北京发行所发行

2003年9月第1版第1次印刷

787mm×1092mm 1/16·44.25印张

印数: 0001-3000册

定价: 69.00元

凡购本书,如有倒页、脱页、缺页,由本社发行部调换 本社购书热线电话(010)68326294

出版者的话

文艺复兴以降,源远流长的科学精神和逐步形成的学术规范,使西方国家在自然科学的各个领域取得了垄断性的优势;也正是这样的传统,使美国在信息技术发展的六十多年间名家辈出、独领风骚。在商业化的进程中,美国的产业界与教育界越来越紧密地结合,计算机学科中的许多泰山北斗同时身处科研和教学的最前线,由此而产生的经典科学著作,不仅擘划了研究的范畴,还揭橥了学术的源变,既遵循学术规范,又自有学者个性,其价值并不会因年月的流逝而减退。

近年,在全球信息化大潮的推动下,我国的计算机产业发展迅猛,对专业人才的需求日益 迫切。这对计算机教育界和出版界都既是机遇,也是挑战;而专业教材的建设在教育战略上显 得举足轻重。在我国信息技术发展时间较短、从业人员较少的现状下,美国等发达国家在其计 算机科学发展的几十年间积淀的经典教材仍有许多值得借鉴之处。因此,引进一批国外优秀计 算机教材将对我国计算机教育事业的发展起积极的推动作用,也是与世界接轨、建设真正的世 界一流大学的必由之路。

机械工业出版社华章图文信息有限公司较早意识到"出版要为教育服务"。自1998年开始,华章公司就将工作重点放在了遴选、移译国外优秀教材上。经过几年的不懈努力,我们与Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann等世界著名出版公司建立了良好的合作关系,从它们现有的数百种教材中甄选出Tanenbaum, Stroustrup, Kernighan, Jim Gray等大师名家的一批经典作品,以"计算机科学丛书"为总称出版,供读者学习、研究及庋藏。大理石纹理的封面,也正体现了这套丛书的品位和格调。

"计算机科学丛书"的出版工作得到了国内外学者的鼎力襄助,国内的专家不仅提供了中肯的选题指导,还不辞劳苦地担任了翻译和审校的工作;而原书的作者也相当关注其作品在中国的传播,有的还专诚为其书的中译本作序。迄今,"计算机科学丛书"已经出版了近百个品种,这些书籍在读者中树立了良好的口碑,并被许多高校采用为正式教材和参考书籍,为进一步推广与发展打下了坚实的基础。

随着学科建设的初步完善和教材改革的逐渐深化,教育界对国外计算机教材的需求和应用都步入一个新的阶段。为此,华章公司将加大引进教材的力度,在"华章教育"的总规划之下出版三个系列的计算机教材:除"计算机科学丛书"之外,对影印版的教材,则单独开辟出"经典原版书库";同时,引进全美通行的教学辅导书"Schaum's Outlines"系列组成"全美经典学习指导系列"。为了保证这三套丛书的权威性,同时也为了更好地为学校和老师们服务,华章公司聘请了中国科学院、北京大学、清华大学、国防科技大学、复旦大学、上海交通大学、南京大学、浙江大学、中国科技大学、哈尔滨工业大学、西安交通大学、中国人民大学、北京航空航天大学、北京邮电大学、中山大学、解放军理工大学、郑州大学、湖北工学院、中国国

家信息安全测评认证中心等国内重点大学和科研机构在计算机的各个领域的著名学者组成"专家指导委员会",为我们提供选题意见和出版监督。

这三套丛书是响应教育部提出的使用外版教材的号召,为国内高校的计算机及相关专业的教学度身订造的。其中许多教材均已为M. I. T., Stanford, U.C. Berkeley, C. M. U. 等世界名牌大学所采用。不仅涵盖了程序设计、数据结构、操作系统、计算机体系结构、数据库、编译原理、软件工程、图形学、通信与网络、离散数学等国内大学计算机专业普遍开设的核心课程,而且各具特色——有的出自语言设计者之手、有的历经三十年而不衰、有的已被全世界的几百所高校采用。在这些圆熟通博的名师大作的指引之下,读者必将在计算机科学的宫殿中由登堂而入室。

权威的作者、经典的教材、一流的译者、严格的审校、精细的编辑,这些因素使我们的图书有了质量的保证,但我们的目标是尽善尽美,而反馈的意见正是我们达到这一终极目标的重要帮助。教材的出版只是我们的后续服务的起点。华章公司欢迎老师和读者对我们的工作提出建议或给予指正,我们的联系方法如下;

电子邮件: hzedu@hzbook.com 联系电话: (010) 68995264

联系地址:北京市西城区百万庄南街1号

邮政编码: 100037

专家指导委员会

(按姓氏笔画顺序)

尤晋元	王 珊	冯博琴	史忠植	史美林
石教英	吕 建	孙玉芳	吴世忠	吴时霖
张立昂	李伟琴	李师贤	李建中	杨冬青
邵维忠	陆丽娜	陆鑫达	陈向群	周伯生
周克定	周傲英	孟小峰	岳丽华	范 明
郑国梁	施伯乐	钟玉琢	唐世渭	袁崇义
高传善	梅宏	程 旭	程时端	谢希仁
裘宗燕	戴葵			

PREFACE

This book is the outgrowth of our teaching advanced undergraduate and graduate courses over the past 20 years. These courses have been taught to different audiences, including students in electrical and electronics engineering, computer engineering, computer science and informatics, as well as to an interdisciplinary audience of a graduate course on automation. This experience led us to make the book as self-contained as possible and to address students with different backgrounds. As prerequisitive knowledge the reader requires only basic calculus, elementary linear algebra, and some probability theory basics. A number of mathematical tools, such as probability and statistics as well as constrained optimization. needed by various chapters, are treated in four Appendices. The book is designed to serve as a text for advanced undergraduate and graduate students, and it can be used for either a one- or a two-semester course. Furthermore, it is intended to be used as a self-study and reference book for research and for the practicing scientist/engineer. This latter audience was also our second incentive for writing this book, due to the involvement of our group in a number of projects related to pattern recognition.

The philosophy of the book is to present various pattern recognition tasks in a unified way, including image analysis, speech processing, and communication applications. Despite their differences, these areas do share common features and their study can only benefit from a unified approach. Each chapter of the book starts with the basics and moves progressively to more advanced topics and reviews upto-date techniques. A number of problems and computer exercises are given at the end of each chapter and a solutions manual is available from the publisher. Furthermore, a number of demonstrations based on MATLAB are available via the web at the book's site, http://www.di.uoa.gr/~stpatrec.

Our intention is to update the site regularly with more and/or improved versions of these demonstrations. Suggestions are always welcome. Also at this web site, a page will be available for typos, which are unavoidable, despite frequent careful reading. The authors would appreciate readers notifying them about any typos found.

xvi PREFACE

This book would have not be written without the constant support and help from a number of colleagues and students throughout the years. We are especially indebted to Prof. K. Berberidis, Dr. E. Kofidis, Prof. A. Liavas, Dr. A. Rontogiannis, Dr. A. Pikrakis, Dr. Gezerlis and Dr. K. Georgoulakis. The constant support provided by Dr. I. Kopsinis from the early stages up to the final stage, with those long nights, has been invaluable. The book improved a great deal after the careful reading and the serious comments and suggestions of Prof. G. Moustakides, Prof. V. Digalakis, Prof. T. Adali, Prof. M. Zervakis, Prof. D. Cavouras, Prof. A. Böhm, Prof. G. Glentis, Prof. E. Koutsoupias, Prof. V. Zissimopoulos, Prof. A. Likas, Dr. A. Vassiliou, Dr. N. Vassilas, Dr. V. Drakopoulos, Dr. S. Hatzispyros. We are greatly indebted to these colleagues for their time and their constructive criticisms. Our collaboration and friendship with Prof. N. Kalouptsidis have been a source of constant inspiration for all these years. We are both deeply indebted to him.

Last but not least, K. Koutroumbas would like to thank Sophia for her tolerance and support and S. Theodoridis would like to thank Despina, Eva, and Eleni, his joyful and supportive "harem."

CONTENTS

Preface				xv
CHAPTER 1	INTRODUCTION			
	1.1	Is Patter	n Recognition Important?	1
	1.2	Features	, Feature Vectors, and Classifiers	3
	1.3	Supervis	sed Versus Unsupervised Pattern	
		Recogni		6
	1.4	Outline	of the Book	8
CHAPTER 2	CLAS	SIFIERS	BASED ON BAYES DECISION THEORY	13
	2.1	Introduc	etion	13
	2.2	Bayes I	Decision Theory	13
	2.3	Discrim	inant Functions and Decision Surfaces	19
	2.4	Bayesia	n Classification for Normal Distributions	20
	2.5	Estimat	ion of Unknown Probability Density	
		Functio	ns	27
		2.5.1	Maximum Likelihood Parameter Estimation	28
		2.5.2	Maximum a Posteriori Probability	
			Estimation	31
		2.5.3	Bayesian Inference	32
		2.5.4	Maximum Entropy Estimation	34
		2.5.5	Mixture Models	35
		2.5.6	Nonparametric Estimation	39
	2.6	The Ne	arest Neighbor Rule	44
CHAPTER 3	LINE	EAR CLAS	SSIFIERS	55
	3.1	Introdu	ection	55
	3.2	Linear	Discriminant Functions and Decision	
		Hyperp	planes	5:
	3.3	The Pe	rceptron Algorithm	5'

viii CONTENTS

	3.4	Least Sc	quares Methods	65
		3.4.1	Mean Square Error Estimation	65
		3.4.2	Stochastic Approximation and the LMS	
			Algorithm	68
		3.4.3	Sum of Error Squares Estimation	70
	3.5	Mean So	quare Estimation Revisited	72
		3.5.1	Mean Square Error Regression	72
		3.5.2	MSE Estimates Posterior Class Probabilities	73
		3.5.3	The Bias-Variance Dilemma	76
	3.6	Support	Vector Machines	77
		3.6.1	Separable Classes	77
		3.6.2	Nonseparable Classes	82
CHAPTER 4	NONI	LINEAR (CLASSIFIERS	93
	4.1	Introduc	etion	93
	4.2	The XC	R Problem	93
	4.3	The Tw	o-Layer Perceptron	94
		4.3.1	Classification Capabilities of the Two-Layer	
			Perceptron	98
	4.4	Three-L	Layer Perceptrons	101
	4.5	Algoritl	nms Based on Exact Classification of the	
		Training	g Set	102
	4.6	The Ba	ckpropagation Algorithm	104
	4.7	Variatio	ons on the Backpropagation Theme	112
	4.8	The Co	st Function Choice	115
	4.9	Choice	of the Network Size	118
	4.10	A Simu	lation Example	124
	4.11	Networ	ks With Weight Sharing	126
	4.12	Genera	lized Linear Classifiers	127
	4.13	Capacit	ty of the l-Dimensional Space in Linear	
		Dichoto		129
	4.14	Polyno	mial Classifiers	131
	4.15	Radial	Basis Function Networks	133
	4.16	Univers	sal Approximators	137
	4.17	Suppor	t Vector Machines: The Nonlinear Case	139
	4.18		on Trees	143
		4.18.1	Set of Questions	146
		4.18.2	Splitting Criterion	146
		4.18.3	Stop-Splitting Rule	147
		4.18.4	Class Assignment Rule	147
	4.19	Discuss	sion	150

CONTENTS ix

CHAPTER 5	FEAT	URE SELECTION	163
	5.1	Introduction	163
	5.2	Preprocessing	164
		5.2.1 Outlier Removal	164
		5.2.2 Data Normalization	165
		5.2.3 Missing Data	165
	5.3	Feature Selection Based on Statistical Hypothesis	
		Testing	165
		5.3.1 Hypothesis Testing Basics	166
		5.3.2 Application of the <i>t</i> -Test in Feature	
		Selection	171
	5.4	The Receiver Operating Characteristics CROC Curve	173
	5.5	Class Separability Measures	174
		5.5.1 Divergence	174
		5.5.2 Chernoff Bound and	
		Bhattacharyya Distance	177
		5.5.3 Scatter Matrices	179
	5.6	Feature Subset Selection	181
		5.6.1 Scalar Feature Selection	182
		5.6.2 Feature Vector Selection	183
	5.7	Optimal Feature Generation	187
	5.8	Neural Networks and Feature Generation/Selection	191
	5.9	A Hint on the Vapnik-Chernovenkis Learning	
		Theory	193
CHAPTER 6	FEAT	URE GENERATION I: LINEAR TRANSFORMS	207
	6.1	Introduction	207
	6.2	Basis Vectors and Images	208
	6.3	The Karhunen-Loève Transform	210
	6.4	The Singular Value Decomposition	215
	6.5	Independent Component Analysis	219
		6.5.1 ICA Based on Second- and Fourth-Order	217
		Cumulants	221
		6.5.2 ICA Based on Mutual Information	222
		6.5.3 An ICA Simulation Example	226
	6.6	The Discrete Fourier Transform (DFT)	226
		6.6.1 One-Dimensional DFT	227
		6.6.2 Two-Dimensional DFT	229
	6.7	The Discrete Cosine and Sine Transforms	230
	6.8	The Hadamard Transform	231
	6.9	The Haar Transform	231
	V.,	IIMIDIVIII	433

X CONTENTS

	6.10	The Haar Expansion Revisited	235
	6.11	Discrete Time Wavelet Transform (DTWT)	239
	6.12	The Multiresolution Interpretation	249
	6.13		252
	6.14	A Look at Two-Dimensional Generalizations	252
	6.15	Applications	255
CHAPTER 7	FEAT	URE GENERATION II	269
	7.1	Introduction	269
	7.2	Regional Features	270
		7.2.1 Features for Texture Characterization	270
		7.2.2 Local Linear Transforms for Texture	
		Feature Extraction	279
		7.2.3 Moments	281
		7.2.4 Parametric Models	286
	7.3	Features for Shape and Size Characterization	294
		7.3.1 Fourier Features	295
		7.3.2 Chain Codes	298
		7.3.3 Moment-Based Features	301
		7.3.4 Geometric Features	302
	7.4	A Glimpse at Fractals	303
		7.4.1 Self-Similarity and Fractal Dimension	303
		7.4.2 Fractional Brownian Motion	306
CHAPTER 8	TEM	PLATE MATCHING	321
	8.1	Introduction	321
	8.2	Measures Based on Optimal Path Searching	021
		Techniques	322
		8.2.1 Bellman's Optimality Principle and	022
		Dynamic Programming	324
		8.2.2 The Edit Distance	325
		8.2.3 Dynamic Time Warping in Speech	323
		Recognition	329
	8.3	Measures Based on Correlations	337
	8.4	Deformable Template Models	343
	0.,	2010111111010 Tolliplate 14100010	343
CHAPTER 9	CON	TEXT-DEPENDENT CLASSIFICATION	351
	9.1	Introduction	351
	9.2	The Bayes Classifier	351
	9.3	Markov Chain Models	352
	9.4	The Viterbi Algorithm	353

CONTENTS xi

		9.5	Channel Equalization	356
		9.6	Hidden Markov Models	361
		9.7	Training Markov Models via Neural Networks	373
		9.8	A discussion of Markov Random Fields	375
CHAPTER	10	SYSTE	EM EVALUATION	385
		10.1	Introduction	385
		10.2	Error Counting Approach	385
		10.3	Exploiting the Finite Size of the Data Set	387
		10.4	A Case Study From Medical Imaging	390
CHAPTER	11	CLUST	TERING: BASIC CONCEPTS	397
		11.1	Introduction	397
			11.1.1 Applications of Cluster Analysis	400
			11.1.2 Types of Features	401
			11.1.3 Definitions of Clustering	402
		11.2	Proximity Measures	404
			11.2.1 Definitions	404
			11.2.2 Proximity Measures between Two Points11.2.3 Proximity Functions between a Point and	407
			a Set	418
			11.2.4 Proximity Functions between Two Sets	423
CHAPTER	12	CLUS'	TERING ALGORITHMS I: SEQUENTIAL	
		ALGC	PRITHMS	429
		12.1	Introduction	429
			12.1.1 Number of Possible Clusterings	429
		12.2	Categories of Clustering Algorithms	431
		12.3	Sequential Clustering Algorithms	433
			12.3.1 Estimation of the Number of Clusters	435
		12.4	A Modification of BSAS	437
		12.5	A Two-Threshold Sequential Scheme	438
		12.6	Refinement Stages	44
		12.7	Neural Network Implementation	443
			12.7.1 Description of the Architecture	443
			12.7.2 Implementation of the BSAS Algorithm	444
CHAPTER	13		TERING ALGORITHMS II: HIERARCHICAL	
		ALGO	DRITHMS	449
		13.1	Introduction	440

xii CONTENTS

13.2	Agglomerative	Algorithms	450
	13.2.1 Defin	ition of Some Useful Quantities	451
	13.2.2 Aggle	omerative Algorithms Based on	
	Matri	x Theory	453
	13.2.3 Mono	otonicity and Crossover	461
	_	ementational Issues	464
		omerative Algorithms Based on	
	-	h Theory	464
		in the Proximity Matrix	474
13.3			476
13.4			478
13.5	Choice of the	Best Number of Clusters	480
CHAPTER 14 CLU			
SCF	EMES BASED C	ON FUNCTION OPTIMIZATION	489
14.1			489
14.2		mposition Schemes	491
		pact and Hyperellipsoidal Clusters	493
		ometrical Interpretation	497
14.3		ing Algorithms	500
		Representatives	505
		lric Surfaces as Representatives	507
		erplane Representatives	517
		bining Quadric and Hyperplane	
	•	esentatives	519
		ometrical Interpretation	521
		rergence Aspects of the Fuzzy	
		tering Algorithms	522
		nating Cluster Estimation	522
14.4		•	522
		Mode-Seeking Property	526
		lternative Possibilistic Scheme	529
14.:		ng Algorithms	529
		Isodata or k-Means or c-Means	
4.4	_	rithm	531
14.0	Vector Quanti	zation	533
CHAPTER 15 CL	STERING ALGO	ORITHMS IV	545
15.	Introduction		545
15.3	Clustering Al	gorithms Based on Graph Theory	545
		mum Spanning Tree Algorithms	546

CONTENTS xiii

		15.2.2	Algorithms Based on Regions of Influence	549
		15.2.3	Algorithms Based on Directed Trees	550
	15.3	Compet	itive Learning Algorithms	552
		15.3.1	Basic Competitive Learning Algorithm	554
		15.3.2	Leaky Learning Algorithm	556
		15.3.3	Conscientious Competitive Learning	
			Algorithms	556
		15.3.4	Competitive Learning-Like Algorithms	
			Associated with Cost Functions	558
		15.3.5	Self-Organizing Maps	559
		15.3.6	Supervised Learning Vector Quantization	560
	15.4	Branch	and Bound Clustering Algorithms	561
	15.5	Binary 1	Morphology Clustering Algorithms (BMCAs)	564
		15.5.1	Discretization	564
		15.5.2	Morphological Operations	565
		15.5.3	Determination of the Clusters in a Discrete	
			Binary Set	568
		15.5.4	Assignment of Feature Vectors to Clusters	570
		15.5.5		571
	15.6		ry Detection Algorithms	573
	15.7	Valley-	Seeking Clustering Algorithms	576
	15.8	Cluster	ing Via Cost Optimization (Revisited)	578
		15.8.1	Simulated Annealing	579
		15.8.2	Deterministic Annealing	58 0
	15.9		ing Using Genetic Algorithms	582
	15.10	Other C	Clustering Algorithms	58 3
CHAPTER 16	CLUS	TER VAI	LIDITY	591
	16.1	Introdu	ction	591
	16.2	Hypoth	esis Testing Revisited	592
	16.3		esis Testing in Cluster Validity	594
			External Criteria	596
		16.3.2	Internal Criteria	602
	16.4	Relativ	e Criteria	605
		16.4.1	Hard Clustering	608
		16.4.2	•	614
	16.5	Validity	y of Individual Clusters	621
		-	External Criteria	621
		16.5.2	Internal Criteria	622
	16.6	Cluster	ing Tendency	624
		16.6.1	•	628

	٠	
v	1	87
Λ	1	. Y

CONTENTS

Appendix A Hints from Probability and Statistics	643
Appendix B	
Linear Algebra Basics	655
Appendix C	
Cost Function Optimization	659
Appendix D	
Basic Definitions from Linear Systems Theory	677
Index	681

INTRODUCTION

1.1 IS PATTERN RECOGNITION IMPORTANT?

Pattern recognition is the scientific discipline whose goal is the classification of objects into a number of categories or classes. Depending on the application, these objects can be images or signal waveforms or any type of measurements that need to be classified. We will refer to these objects using the generic term patterns. Pattern recognition has a long history, but before the 1960s it was mostly the output of theoretical research in the area of statistics. As with everything else, the advent of computers increased the demand for practical applications of pattern recognition, which in turn set new demands for further theoretical developments. As our society evolves from the industrial to its postindustrial phase, automation in industrial production and the need for information handling and retrieval are becoming increasingly important. This trend has pushed pattern recognition to the high edge of today's engineering applications and research. Pattern recognition is an integral part in most machine intelligence systems built for decision making.

Machine vision is an area in which pattern recognition is of importance. A machine vision system captures images via a camera and analyzes them to produce descriptions of what is imaged. A typical application of a machine vision system is in the manufacturing industry, either for automated visual inspection or for automation in the assembly line. For example, in inspection, manufactured objects on a moving conveyor may pass the inspection station, where the camera stands, and it has to be ascertained whether there is a defect. Thus, images have to be analyzed on line, and a pattern recognition system has to classify the objects into the "defect" or "non-defect" class. After that, an action has to be taken, such as to reject the offending parts. In an assembly line, different objects must be located and "recognized," that is, classified in one of a number of classes known a priori. Examples are the "screwdriver class," the "German key class," and so forth in a tools' manufacturing unit. Then a robot arm can place the objects in the right place.

Character (letter or number) recognition is another important area of pattern recognition, with major implications in automation and information handling. Optical character recognition (OCR) systems are already commercially available and more or less familiar to all of us. An OCR system has a "front end" device