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Chapter 5

Noncoherent Communication
with Waveforms

So far, we have concentrated on communication scenarios where a message is transmitted
using a distinct signal that is precisely known to the receiver, except for the corrupting noise.
In Chapter 4, it was shown that coherent demodulation involved mixing the received signal
with inphase (I) and quadrature (Q) sinusoidal references, whose phases were exactly equal
to the incoming received phase. It was shown that lack of knowledge of the incoming phase
can result in cross-talk between the [ and Q arms, the amount of which depends on the value
of the carrier phase error ¢, that is, the phase error between the locally generated and the
incoming phase.

In many applications, it is not possible to perform coherent detection due to the in-
ability of the receiver to produce meaningful carrier phase estimates, due, for example, to
significant oscillator phase noise instability. In some scenarios, coherent systems are unde-
sirable due to the additional complexity imposed by the phase estimation circuitry. In this
chapter, we investigate noncoherent waveform communications in AWGN channels. First,
we derive the structure and analyze the performance of optimum and suboptimum receivers
in random phase channels. Both orthogonal and nonorthogonal signals are considered and
the effects of imperfect time and/or frequency synchronization are assessed. We later extend
the concept to both random amplitude and phase channels in which the amplitude of the in-
coming signal is also random due to fading in the link. Communications in both Rayleigh
and Rician channels are examined and their respective performances evaluated.

In noncoherent M-ary communications, the received signal can be expressed by

mg— Hy: r(t)=so(t,¥)+n(), 0<r<T

my— H : r(t)=s1¢,¥)+n(), 0<t<T
(5.1)

my-y—> Hy1: rt)=sy_1(t,¥)+n@), 0<t<T

where the vector W denotes the vector of unknown parameters [1] that are not or cannot
be estimated in the receiver. As before, the noise is white Gaussian with one-sided PSD Ny
Watts/Hz and T denotes the duration of the transmitted message. We assume for now that
perfect symbol synchronization has been achieved. Later, we will consider and assess the
error probability in the presence of symbol sync error. Note that due to the randomness of
the vector W, each message is transmitted using a sample waveform of a random process
rather than a deterministic and known signal. As far as the receiver is concerned, it does not
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distinguish between an unknown random phase introduced in the channel or a random phase
inserted at the transmitter. A message m; can be conveyed using a set or a family of known
waveforms, rather than a fixed and unique waveform. Note that for a fixed vector W, the
received waveforms are known precisely to the receiver. Hypothesis testing as described by
(5.1) is typically referred to as “nonsimple” detection as opposed to the “simple” detection
in coherent communications.

5.1 NONCOHERENT RECEIVERS IN RANDOM PHASE CHANNELS

In random phase channels, the phase 6 of the received signal is not known, nor estimated by
the receiver. All the other parameters such as amplitude and frequency are assumed known
and hence, the vector W of unknown parameters consists solely of the scalar 6, that is,
W = 6. The received signal, assuming m; is transmitted, is thus given by'

r(t) = V2a; (1) cos(wet + @i(t) +0) +n(t). 0<t<T (5.2)

where w, is the carrier frequency, a;(#) the amplitude information, ¢; (1) the phase informa-
tion2, 6 the unknown phase, and n(r) the bandpass Gaussian noise process given by (4B.33)
as

n(t)= NG) {n.(1) cos w.t — ng(t) sin wet} (5.3)

The baseband noise components n.(t) and n,(r) are independent Gaussian processes with
PSDs given by

Su (f) = Sp.(f) = { ¥ 1fI<B (5.4)

0 otherwise

Now according to the bandpass sampling theorem [2], n(t) is completely characterized by
samples of n.(r) and ng(r) taken every 1/2B sec, that is

o0
n(t)=~2 Y sinc2Bt — k) {nc(te) coswe(t — i) — ns(t) sinwe(t — 1)} (5.5)

k=—00

Moreover, we note that

/ " R2dt = = > [n%(rk>+n§(zk)] (5.6)

B k=-00

represents the energy in the sample function n(z). The joint pdf of the vector n = (n.(11),

ne(t2), ..., ne(T), ng(t1), ns(t2), ..., ng(T))T created from sampling a T-second segment
of n(t) is given by

2BT ;. 2 2
(n2(%) + n2(t)) } 57

Zk-—l
vengry(m)=Ce — =
fnc(tl). .nJ(T)( ) Xp { 2NOB

1. As in Chapter 4, we denote the received random process by 7(f) and a sample function of that random process
by p(r). Similarly, the received random vector is denoted by r and a sample vector of that random vector by p.
2. In Chapter S, ¢;(1) denotes the phase information when message m; is transmitted, but it also denotes the i

basis function of the K-L expansion (consistent with the notation used in Chapter 4). The reader is therefore alerted
to the dual use of ¢;(r) and special care is taken to redefine ¢, (1) whenever it is used.
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since the 2 x 2BT samples are uncorrelated, Gaussian each with variance NgB. The con-
stant C is the normalization factor such that the multidimentional integral of the density is
unity. Using (5.6) to convert from sums of samples to a time integral, we have

1 T
Jnetny... n;(T)(n)ZCCXP[—‘ﬁ‘f nz(t)dt} (5.8)
0Jo

which is identical to (4.7). Assuming that message m; is transmitted and conditioning on the
random phase 6, then

felp/mi 0) = falp —si/m;.0) = falp ~si)

N (p(t) — V2a; (1) cos(wet + i (1) + e))' | (5.9
Ny

=Cexp{ -

and
7

Selp/mi) = felp/mi 0) foym (6 /m;)do (5.10)

hatit

Assuming that 6 is random and independent of which message is transmitted, fy,u, (6/11;)
= fy(6) and (5.10) simplifies to

fe(p/mi) = fr(p/mi.8) fu(6)do (5.1

-

Since the receiver does not attempt to estimate the incoming phase 6, it can be assumed
random with a uniform pdf, that is

)
ful(8) = [ s; —msf=m (5.12)
0 otherwise

Expanding (5.9), fi.(p/m;, ) can be expressed as

, 2 _ E;
felp/m;. 0)=Cexp {—(:(.,' cosf — 7, smé})} exp (~ ——') (5.13)
Ny No
where E; = f(,l al.z(l)(lr 1s the energy of «; (1) and the 1-Q projections generated by means of
a local oscillator are '

T
Zei :/ /)(I)a(-(l)\/_jcns((utt + ¢ (t))ddt (5.14a)
0

r
Tsi ———f p(f)ui(t)\/isin(w(f + ¢ (1 )dt (5.14h)
1)

As a special case when the transmitted information is contained in the amplitude only,
then r(t) = \/5.\',-(1) cos{w t + 6) + n(r), that is, ¢;{(t) =0 Vi and s;(t) = «; (1) and (5.14)
can be expressed as the 1-Q projections

T
za=/ p(tysi(t)de (5.15a)
0
T
in=f ps(t)si()dt (5.15b)
0
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V2 cos

LPF rc(t)
T (1)
LPF  fmm—b> 1 (1)
. Figure 5.1 Demodulation with random
V2 sin wt phase
where

0c(t) 2 p(H)V2 cos wet (5.16a)
05 (1) A p(1)V/2 sin wet (5.16b)

are the projections (inphase and quadrature (I and Q)] of the received waveform p(r) onto
the orthonormal basis {ﬁ coSs wet, V2 sinw.t), as depicted in Fig. 5.1.

Transforming z¢; and zs; of (5.14) into polar coordinates using the envelope &; and the
phase ¢; as

Zei = & cos @i (5.17a)
i =& sing; (5.17b)
then
20 COS B — z5i 5in O = (§; cos ¢;) cos & — (§; sing;) sin & (5.18)
= £ cos(@ + ¢;) '
and (5.13) becomes -
28; E;
fr/e(p/miﬁ)NCXp{—cos(B—%—(b;)]exp (———) (5.19)
No No
Averaging over the density of 8, we have from (5.11) and (5.13)
1 (" 2E; E;
Je(p/mi) ~ — f exp —S—’ cos(@ + ¢;)tdfexp| —— (5.20)
27 J o No Ny

Such an integral has been encountered in several engineering applications and is referred to
as the “zero-order modified Bessel function of the first kind” [3, 4]. Specifically, it is defined
through

1 T

Io(x) A — [ *°P4p (5.21)

T J-n
and is plotted in Fig. 5.2 as a function of x. For positive x, it is a monotonically increasing
function and because of the periodicity of the cosine, an arbitrary phase ¢ can be added to
its argument without altering the value of Ip(x), that is

T
Io(x) = _l__/ et COS(ﬁ+¢)dﬂ (5‘22)
2 J_»
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Figure 5.2 Plot of /y(x)
Hence, using (5.22) in (5.20), the optimum decision rule sets m(p(t)) = m; when
2¢; E;
lp(— — 5.23
o(NO)exP( No) ( )

is maximum for k = . Recall from (5.17) that the envelope &; is given by

Ei=\22 +22 (5.24)
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where z.; and z;; are the projections of p.(¢) and p,(t) onto the i signal as given by (5.15a)
and (5.15b), respectively. For equal energy signals, the factor exp(—E;/Np) can be ignored
and since Ip(2£;/Np) is a monotone increasing function, we need only to maximize &; or ’g‘,.z
where

g2 =74+ 7% (5.25)

The optimum receiver for equal energy signals is depicted in Fig. 5.3 where the
received signal is first mixed with sine and cosine waveforms at the incoming frequency and
the resulting outputs are correlated with each of the M possible transmitted signals.> The
receiver then forms the sum of the squares of the sine and cosine correlations and decides
on the message with maximum resulting envelope. It is clear that the decision process
involves nonlinear operations unlike the coherent receiver discussed in Chapter 4. This is
the penalty paid for not knowing or estimating the incoming carrier phase 6. An alternative
implementation can be obtained with matched filters with impulse responses

hi(t)=s;(T —1), i=0,1,---,M—1 (5.26)

followed by a sampler at multiples of T seconds as shown in Fig. 5.4. When the signals can
be expressed as

N
i)=Y _sijjt), i=0,1,-- M —1 (5.27)
j=1

as given by (4.40), then it is possible to correlate r.(t) and ry(r) with the basis functions
¢i(t),i =1,2,---,N and apply the appropriate signal weights to form the various 5,-2,
i=0,1,---, M — 1, as shown in Fig. 5.5.

A significantly different approach for optimum detection of equiprobable equal en-
ergy signals is possible with envelope detectors. Consider Fig. 5.6, which depicts a filter
hpp k(t) followed by an envelope detector. Since the input to the filter r(¢) is centered at f,

let the filter h1,p x (1) be matched to the signal si(¢), translated to frequency f. (“bp” stands
for bandpass), that is

Ropa(t) & V251 (T — t)coswet, k=0,1,---, M —1 (5.28)

The output of the filter becomes

uk(t)=/ r(thpp (t — T)dT

. (5.29)
= «/5/ r(t)si(T —t +1)cosw:(t — t)dT
or
wp(t) = ucr(t) cos wet + ugy (t) sin wet (5.30)

3. Note that in Fig. 5.3, lowpass filters have been inserted at the output of the mixers. As long as the bandwidth
of these filters is much larger than the data rate, they do not impact the performance of the optimum receiver. It is
however good practice to include them in an analog implementation as the mixers are highly nonlinear devices that
generate more than the desired product at their output.
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Figure 5.3 M-ary noncoherent receiver for equal energy signals
where we define
oc oG
Uek(t) é/ r(0)s(T =t + 1)v/2 cos werdt =/ re(t)seg(T —t +t)dt (5.31a)
-0 —0o0
o 20
usk(t) éf r(0)s(T — t + V2sinw.rdt =/ ro(T)si(T —t + )dt  (5.31b)
—oc —o0

Since r.(t) and r¢(7) are low-frequency signals and sx(7) is also a slowly varying signal,
both u(t) and us(t) remain relatively constant over several cycles of cos w.t. As a result,
uy(t) is a bandpass signal and can thus be expressed as

ui (1) = Re {ak (r)e—fwrf} (5.32)
where the complex baseband waveform a, () is given by

ap(t) = uer(t) + jus(r) (5.33)



316 Noncoherent Communication with Waveforms Chap.5

—> hy(t) { ) ' 2
5o
—p
. .2 :
> ho(t) { r |I
) (]
2 ' 0
7—" hy (1) = M
1 A O 2
3 P [ m
V2 cos oy t - A
# - s \2 ‘ : H
r. v h1(t) v F | A
LPF 4 ! T
r(t) . 1 o]
[ ] H
Py R ) :
I o
JIh ;2 b,
>, i
V2 sin @, M1 - S
—
Jhw N :
g BRI () (=T

Figure 5.4 Alternate implementation of M-ary noncoherent receivers for equal energy signals with
matched filters

The output of the envelope detector becomes

ex(t) = lax(1)| (5.34a)

ex(r) = Jul (1) + ul (1) (5.34b)

If we sample the output at ¢ = T', we have from (5.34) and (5.31)

or

ex(T) = Ju2(T) + u2(T)

T T
- (/ rc(r)skmdr) +( j m(r)sk(r)dr)
0 0

which is identical to & as given by (5.24) since uc(T) = zc¢ and ug(T) = zg as given
by (5.15a) and (5.15b), respectively. Hence, the optimum M -ary noncoherent detector for
equiprobable, equal energy signals can be implemented using matched filters (to the band-
pass rather than the baseband signals) and envelope detectors as shown in Fig. 5.7. Receivers
that examine only the envelope of the matched filter output are termed noncoherent or inco-
herent receivers as they do not exploit the knowledge of the carrier phase; receivers that do
exploit knowledge of the carrier phase are called coherent.

2 2 (5.35)

5.1.1 Optimum M-FSK Receivers

A signal set of great interest in noncoherent communications consists of M sinusoids at
distinct frequencies and the set is referred to as Multiple Frequency-Shift-Keying (M-FSK)
signals. In general, the frequency separation can be nonuniform, but equidistant signals are
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Figure 5.5 M -ary noncoherent receiver implementation with the basis functions
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Figure 5.6 Envelope detection

of great practical interest as they occupy the minimum required bandwidth for orthogonal
noncoherent communications. The transmitted signals are characterized by

sp(t) = V2P cos(w,t +wit +8), 0<t<T (5.36)

where wy denotes the frequency of the k™ tone and 6 the unknown random phase. The latter
is independent from message to message because each signal is typically generated by a
unique oscillator whose initial phase is random when the signal is selected. The pairwise
signal correlation coefficient, as defined by (4.45), reduces to

1 T 1 T
Yij = —E-/(; si(sj(dt = 7/; cos(2m fi jt +6 — 6"ydt (5.37)

where E = PT, fij = fi — f; is the frequency separation between the tones, and 6, 8’



318 Noncoherent Communication with Waveforms Chap.5

BANDPASS
MATCHED
FILTERS : .
ENVELOPE 0
»ho > —_—
bp.0 DETECTOR \ c
! o
h () ke ENVELOPE R/ s Mol s
\ ; g »IDETECTOR -_— m
r(t) | A |p
. . ] R
[ ] [ ] ‘ A
. . ‘ T
) 0
ENVELOPE X S| R
1 h ! > —
bp.M—$ DETECTOR \
t=T

Figure 5.7 Envelope detector noncoherent receiver for equal energy signals

are the random carrier phases when signals s5;(¢) and s;(¢) are transmitted. Because of
the random phase 6 — 6, the onlyjway to guarantee zero correlation is for the integral to
be carried out over at least a full Period of the difference sinusoid. Hence, the minimum
frequency separation to guarantee orthogonality is

1
fij=7 Hz (5.38)

This separation is equal to twice the minimum separation required for coherent M-FSK
transmission, 1/(27T), derived earlier in Chapter 4. Given M tones, the minimum bandwidth
required for orthogonal noncoherent transmission is M /T Hz achieved by uniformly spac-
ing the tones with 1/T Hz separation. The received signal, assuming that message my is
transmitted, is given by

r(t)y =+v2Pcos2uf, # 2n (;—) t+60)+n@), 0<t<T (5.39)

Typically, the tones are symmetrically spaced around the carrier f., which can easily be
modeled by (5.39) by considering negative values of k. The optimum receiver is still as
shown in Fig. 5.3 where the various signals are the corresponding sinusoids. The receiver
still computes S,-z for each signal using ‘;‘iz = zfi + zft. where z.; and z;; are given by (5.14)
with aj(t) = /P ¥i and ¢;(t) = w;t Vi, that is

T
Zei = «/2P/ r(t) cos(we + w;i)tdt (5.40)
0
and
T
25 = V2P f r(t) sin(we + w;)tdt (5.41)
0
Hence

2

T
51.2 =2P [(/ r(t) cos(we + wi)tdf)
0

T 2
+ (f r(t) sin{fw. + wi)tdr) ] (5.42)
0
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Figure 5.8 Highpass spectrum analyzer receiver

Using the procedure outlined in Appendix 5B, (5.42) is identically equivalent to

T T-1
E;‘,-z =4pP f / r(t)r(t + 1) cos(w, + w;)tdrdt (5.43)
0 Jo

Defining the finite-time autocorrelation function of r(z) as

T-1
(1) é/ r(r(t+1)dt, O0<t<T (5.44)
0

then, (5.43) can be expressed as

r
s,?=41>/ ér(T) coS(we + wj)tdT (5.45)
0

Following the argument in Appendix 5B, the quantity 51.2 can be viewed as the Fourier
transform of the even function ¢, .(t) [constructed from ¢,(7) as in (5B.10)] evaluated at
the discrete frequency f. + f;; thus

E2=4Pd, (f.+ fO) (5.46)

where &, ( f) denotes the Fourier transform [5] of ¢, , (). This interpretation of the deci-
sion process leads to the the highpass spectrum analyzer receiver in Fig. 5.8.% In practice,
the received signal is first downconverted to an equivalent lowpass waveform v(t) using
a reference at the carrier frequency. Thus, any practical implementation must be provided
with an estimate of f.. This heterodyning operation reduces the highpass spectrum analyzer
receiver of Fig. 5.8 to its lowpass equivalent illustrated in Fig. 5.9, with the corresponding
observations {®,(i/T), i =0.1,.---, M — |}.

5.1.2 Suboptimum M-FSK Receivers

Exact evaluation of the spectral observations is difficult when one elects to implement
the spectrum analyzer receivers of Figures 5.8 and 5.9. However, it is possible to ap-
proximate the spectral estimate ®,(f) which then results in a receiver performance that
is suboptimum. There are various approaches to approximating the spectral observations
{®,(k/T), k=0,1,---.M—1}.

First, one can evaluate the autocorrelation function ¢,(t) directly and then evaluate
the Fourier transform to obtain &, (f). This is referred to as the autocorrelation function

4. In Figures 5.8 and 5.9, the Fourier transtorm is operating on the resulting even function, as discussed in
Appendix 5B.
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Figure 5.9 Lowpass spectrum analyzer receiver

method. A practical realization of this method that is convenient for digital processing is
discussed in [6, 7] and summarized here. Since the Fourier transform of the random process
u(?) is essentially zero outside the frequency interval | f| < M/T, then in accordance with
the sampling theorem we have, to a good approximation

2BT

v() = v (t) A Z v (2—;—) sinc [2B (t — —2%)] (5.47)
1

n=

where B A M/T and v, = v(n/2B) is a sample of v(¢) att = n/2B. In terms of the above,
the autocorrelation function of v,(¢) is given by

T—1 2BT 2BT . n—m
Pu, (1) = /0 Va(Due(t + 1)dt = z Z Up UpSINC [28 (r + 7?)] (5.48)

n=1 m=1

which approximates that of ¢, (7). We observe that for 7 = k/2B, k an integer, the above
expression simplifies to

2BT -k
¢v,,(2k [f‘gz,,:l UnVnsk, k=0,%1,£2,- £QBT — 1) (549

—5) - 0, otherwise

Since the spectrum of ¢, () is limited to the frequency range | f| < B, one obtains by
means of the sampling theorem

Py, (T) = Pu. (——) sinc [2B (r - ——)] (5.50)
k=—(2BT—1) 2B 2B

Taking Fourier transforms, the spectrum of v(t) is approximated by

Pu(f) =Py, (f) = —1—¢ 0 + lzi{:_lq) (—k—)cos(ﬂ) ~B < f<B (5851
v T TR T g T B & va\ 2B B /)’ =7 = ‘
These expressions for the correlation coefficients and for the approximate spectral observa-

tions &, (k/T) form the basis for the computational procedure.
Second, one can calculate the spectrum by the discrete Fourier transform approach.
The latter takes samples v(k/2B), k = {1,2, ---, 2BT} and evaluates

2BT 2BT
X(f)= v L3 cos mkf and Y(f)= v * sin mkf (5.52)
2B B 2B B

k=1 k=1
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Figure 5.10 Suboptimum binary FSK receiver

and then computes the spectrum

() = X3(f) + Y3(f) (5.53)

which yields the spectral observations ®,(k/T), k = {1.2,---,2BT}. The discrete Fourier
transform method permits greatly simplified analysis {8].

Third, the receiver can be implemented with a small computer programmed with
the Cooley-Tukey Fast Fourier Transform algorithm [9] and processing the output of an
analog-to-digital converter. The Fast Fourier Transform (FFT) approach produces results at
frequencies that are multiples of 1/ T provided that the number of samples is a power of two.
Although the FFT method does not give better results than the discrete Fourier transform
or the autocorrelation function method, it has the advantage that considerably less time is
required to perform numerical operations.

Suboptimum detection also occurs when there is a bandpass limiter prior to the detec-
tor. In many applications, bandpass limiters are used to provide some form of automatic gain
control (AGC) in the receiver and because of their inherent nonlinearity, they degrade the
performance of the detector. Suboptimum detection of binary FSK signals in the presence of
a bandpass limiter is discussed in [10], where it is shown that a 0.5 dB degradation occurs
for P,(E) < 102. Another form of suboptimum detection occurs when the integrate-and-
dump filters are replaced by bandpass filters as shown in Fig. 5.10 for binary FSK signals,
symmetrically located around the carrier frequency. In this case, the receiver performance is
degraded and is a function of the bandpass filter bandwidth, as discussed later.

5.2 PERFORMANCE OF NONCOHERENT RECEIVERS IN RANDOM PHASE
CHANNELS

It is of great interest to assess the performance of noncoherent systems and compare it to
their coherent counterpart. First, we will derive the performance of orthogonal signals and
determine the resulting penalty paid in not tracking the carrier phase at the receiver. We
will then generalize the results to any arbitrary set of signals and in particular, consider
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the effect of frequency and timing synchronization errors. A bound on the performance
of orthogonal M-FSK signals is then presented in the presence of frequency error. Finally,
the performances of two suboptimum M-FSK receivers are evaluated and the effect of time
domain truncation in evaluating the spectral observations is assessed.

5.2.1 Performance of M-ary Orthogonal Signals

The M-ary receiver for equal energy signals is depicted in Fig. 5.3 and the receiver
picks the message my corresponding to maximum E,-z fori=0,1,---.M — 1. In or-
der to compute the probability of symbol error, we need to characterize the joint pdf
fégvglzw_,,'%_](gg,glz,--.,s,%l_l). Assuming that message my is transmitted, then r(r) =

V2si(t) cos(wet + 0) + n(r) with

T T
i = / re(t)si(t)de = / (sk(t) cos B + nc(1))s; (1)dt (5.54)
0 0
and
T T
Zsi = f re(t)s; (t)dt = f (sk(2) sin 6 + ng(2))s;(1)dt (5.55)
0 0
For a fixed 8, the conditional means become
T )
_ . | EscosB, i=k
E{z:/0} = cosG/O si(t)si(1)dt = [0, P £k (5.56)
Similarly
T . .
ot e . ) Egsin®, i=k
E{z;i/0} =sin6 fo sk(t)si(t)dt = { 0. i £k (5.57)
The conditional variances are computed using
T 2
N
olye=E {(f nc(t)Si(t)dt) } = —2qu (5.58a)
0
and
T 2
N
<%w=E[([nAmMMO]:>§a (5.58b)
0

which are also the unconditional variances. Recall that n.(z) and n(¢t) are bandlimited
processes; however, assuming that BT > 1, they can be viewed as nonbandlimited using
the matched filter argument previously outlined in Chapter 4. Since n.(t) and ns(z) are
independent, z.; and zy; are conditionally uncorrelated and hence independent since they
are conditionally Gaussian, that is

{&—HMNW+O—HmNN}
exp iy —

civEsi Z, 9 =
Jreinzsi (2, ¥/0) 7 E;No E,No

24,2 , (5.59)
_ { TENG SXP {—253130 l : 17k

1 exp __zz+y2+Ef—2Eszcos()—2yE,sin6 , i=k
TENg E;Ng
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Consider now the pairwise correlation among the various z.; and zg, { =0, 1,---,
M — 1. Assuming that my is transmitted, then

T T
E{zc,-zcj} =F [[/ (sk(t) cos b + nc(t))s;(t)dt} [[ (se(t)sinf + nc(r))sj(r)dt}]
Q 0

T T
=F [ (/ nc(t)s,-(t)dt) (f nc(r)sj(t)dr)} (5.60)
0 0

Moreover

T T
E{zckzejl=E {(Es cos @ + / nc(z)sk(t)dt) (f nc(r)sj(t)dr)}
0 0 s.61)

=0, Jj#k
Using similar arguments, it can be easily shown that
E{zsizsj) = Elzi} Efzsj} =0, i#j
Efzcizsj} = E{zci)E{z5j} =0, i=
which holds true even when i = k or j = k but not both. Therefore, the variables z; and z;;,

i=0,1,---, M — | are uncorrelated and hence independent since they are conditionally
Gaussian. Defining 6; = tan™'(z5; /z.;), then (5.59) becomes

(5.62)

2,2 ,
nEi.NO exp{—ZE:}fo } , i £k
ch'i.Zsi(23 )’/9) = l ZZ+)’2+E52—2E_; lzz+y2 cos(6—6;) —k (563)
TEN SXP ) T E,No o 1=
Integrating over 4 and using the definition of Io(x) as given by (5.22), (5.63) reduces to
{ 22432 .
f ( ) nE, Noexp[ E_;ﬁ;a}‘ l#k 4
ez Y) = 242+ E? 32 (5.64)
ZeirZsi N - 1 24y +E] 24/22+y2 .
7ENo exp{ EsNo }[0( Mo ) i=k

Making the change of variables §; = ,/z + z;,, then

2 .
Ei,oexp{ EsNo} . i#k

2% £24E2 2% .
ENo °XP [‘ ENo ]10 (Vo) i=k
The Rayleigh and Rician densities of (5.65) can also be obtained using the results of Ap-

pendix 5A, namely, (5A.21) and (5A.27) with 02 = NoEs/2 and 52 = Esz. Let us proceed
by normalizing ’g',.z using

Je(§) = (5.65)

g2
== 5.66
A E.No (5.66)
then f4,(a) is given by
(EsN,
farta) = L5 ET0D) (5.67)

2/(a/EsNo)



