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, PREFACE
. THIS book gives an elementary account of the properties of
semi-conductors. It is especially concerned with the
theory of electron flow in them, and across the boundary be-
tween them and either a metal or a vacuum. Much of this
theory has been available only in advanced texts or in
original papers, and it is hoped that an elementary treat-
ment will be of assistance to students of the electron physics
of solids. Only brief reference is made to practical applica-
tions and experimental results, as the main interest is in
the basic theory.

I am grateful to numerous members of the staff of these
Laboratories for assistance with the preparation of this book.
In particular, I wish to express my gratitude to Mr. V. J.
Francis for reading the manuscript and making suggestions
for its improvement, and also to my wife for her assistance
irr its preparation.

D.A. W,

Research Laboratortes,

The General Electric Co., Ltd.,

Wembley,
England.



CHAP,

CONTENTS

PAGE

I. ELECTRONS AND METALS I
1. INTRODUCTION
2. POTENTIAL ENERGY OF ELECTRONS IN A

SOLID
FERMI-DIRAC STATISTICS
ELECTRICAL CONDUCTIVITY
THERMIONIC EMISSION
PHOTO-ELECTRIC EMISSION
THE WORK FUNCTION
ADSORBED LAYERS
POTENTIAL BARRIERS
CONTACT POTENTIAL
THE EFFECT OF APPLIED FIELDS
SPACE CHARGE

II. ELECTRONS IN CRYSTALS 24

I.

Nowd w

THE BAND STRUCTURE

SEMI-CONDUCTORS

ELECTRICAL CONDUCTIVITY OF SEMI-
CONDUCTORS

NICKEL OXIDE

IRON OXIDE

MULTI-CRYSTALLINE SOLIDS

APPLICATIONS—THERMISTORS

III. ELECTRON EMISSION FROM SEMI- 3o
CONDUCTORS

I.

© N Ui h N

CONTACT POTENTIAL
THERMIONIC EMISSION

THE WORK FUNCTION

SURFACE STATES

THE FRANCK—CONDON PRINCIPLE
PHOTO-ELECTRIC EMISSION
PHOTO-CONDUCTIVITY
ACCELERATING FIELDS

ADSORBED LAYERS



viit SEMI-CONDUCTORS
CHAP. PAGE

IV. DETERMINATION OF ELECTRON 68
DENSITY IN SEMI-CONDUCTORS |

¥. HALL EFFECT

2. THERMO-ELECTRIC POWER

3. ELECTROLYTIC CONDUCTIVITY
4. APPLICATIONS

V. SECONDARY EMISSION -6

I. GENERAL CONSIDERATIONS

2. THEORY OF SECONDARY EMISSION OF
METALS

THE DEPTH OF ORIGIN OF SECONDARIES
THE SECONDARY EMISSION OF INSULATORS

SECONDARY EMISSION OF SEMI-CON-
DUCTORS

EFFECT OF ADSORBED LAYERS ON &

. INTER-METALLIC COMPOUNDS

MALTER EFFECT

ATTAINMENT OF LOW VALUES OF &

10. CRYSTAL COUNTERS

VI. METAL-SEMI-CONDUCTOR CON- ¢6
TACTS
I. EQUILIBRIUM WITH ‘ GOOD’ AND ° PER-
FECT > CONTACT
2. CURRENT FLOW WITH ‘GOOD’ AND
‘ PERFECT ° CONTACT

© N O ip e

3. EQUILIBRIUM WITH THICK INSULATING
FILM
4. CURRENT FLOW WITH THICK INSULATING
FILM
5. APPLICATIONS—TRANSISTORS
VII. THERMIONIC CATHODES 108
I. GENERAL

2. THE OXIDE CATHODE
3. THORIA COATINGS

VIII. PHOTO-ELECTRIC CATHODES 122
INDEX | 129



CHAPTER I
ELECTRONS 'AND METALS

1. Introduction.—Before proceeding to a discussion of
non-metallic solids, it will be necessary to.survey briefly
the elementary treatment of metals, with special reference -
to those properties which determine electron flow in-the
solid and across boundaries between different solids or
hetween a solid and a vacuum. The results of this treat-
ment of the metallic case will be required in deriving the
corresponding properties of semi-conductors, and com-
parison of the results in the two cases will be of interest.
It is necessary first to introduce the conception of the
energy levels of electrons in a solid, which is invoked
continuously in the remainder of the book.

2. Potential Energy of Electrons in a Solid.—When
considering the motion of electrons, both in a solid and
when escaping from its surface, it is convenient to draw
potential-energy diagrams, since the motion of the elec-
trons can be regarded to a first approximation as that of
particles in a conservative field of force. A simple case
to consider by way of introduction is that of a pendulum
bob, in which the potential energy V varies with displace-
~ment as in Fig. 1. A particle with total energy H, will
have potential energy H, and kinetic energy zero when the
dlsplacement is OB. The kinetic energy will have its
maximum value H; at zero displacement, and inter-
mediately the potent1al energy at displacement OA is
given by AP. The motion is restricted to that region in
which the potential energy V is less than or equal to the -
total energy H.

It is known experimentally that in order to liberate
electrons from a solid, energy must be provided, for
example, by heating, by incident radiation, or by bombard-
ment with electrons or other particles. A solid can there-
fore be represented by a potential-energy diagram as in
Fig. 2, in which O is the potential-energy level outside the
solid, and A is the corresponding lower level for an electron

I



2 SEMI-CONDUCTORS

in the solid. 'Thus, when the electron is regarded as a
particle in classical mechanics, it will remain in motion
inside the solid when its kinetic energy is in the range
from zero to AO, for example, if it is AB. If, however,
an electron has kinetic energy AC, it can escape from the
solid, and outside the solid it will have kinetic energy OC.
At room temperature in the dark, very few electrons have
total energy greater than AO in any solid, but the number

el S

0 A B Displacement.

F1G. 1.—Energy of an oscillating pendulum bob

increases with temperature, leading to thermionic emission,
while incident light or particles can interact with an
electron of kinetic energy AB, increasing it to AC, and so
pérmitting the escape of the electron. This corresponds
with photo-electric emission in the case of incident
radiation and secondary emission in the case of incident
particles. |

In considering the behaviour of electrons in- a solid
in greater detail, it is necessary to have information con-
cerning the number of electrons in motion and the way
in which their energies are distributed. In the case of
a metal, the simplest assumption is that the metal atoms
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arranged in the crystal lattice lose their valency electrons,
in the sense that these electrons do not remain attached
to particular atoms, but are free to wandex in-the crystal.
If the field of the positive ions is smoadthed out, and its
local very violent fluctuations are dlsregarded the electrons
can be regarded as completely free, and cdn be considered
as an ‘ electron gas’. Since the total field on one electron
is that due to the N positive ions in the crystal and the
N-1 other electrons, this smoothing out gives a good first
approximation. Since there are one or more valency
electrons per atom, there will be of the order 10?? free
electrons per cm.? in the crystal. Their energy distribu-

T Energy
—— e ——— - c
Potential Vacuum
Energy V
of enelectron f—————— — — — — — — — B
Solid

FI1G, 2.—Representation of a solid

tion will be determined by application of quantum theory
and the exclusion principle. The states of motion in
which electrons can exist correspond with discrete energy
levels as in a single atom, but the levels are very close
together. Nevertheless the exclusion principle applies,
and no more than two electrons (of opposite spins) can be
in exactly the same energy state. In applying the quantum
rules, we are departing from the conception of an electron
as a particle in classical mechanics, and are using the
consequences of the wave picture which will be referred
to again below./ The consequence of the exclusion
principle is that even at the absolute zero of temperature,
energy levels are occupied by two electrons each, from the
zero of kinetic energy to some value W, which is typical
- of the particular metal. When the temperature is raised,
it is only possible for electrons in the highest occupled
levels to gain energy until they occupy higher levels,
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which were unoccupied at zero temperature. Thus only
a small proportion of the total free electrons, the fastest-
moving ones, gain energy when the temperature is raised.

3. Fermi-Dirac Statistics.—The energy distribution
described abo# is described mathematically by the Fermi-
Dirac statistics, which are based on the exclusion principle
and on the indistinguishability of electrons.’Y’ The result

15
x(2m)3'2 EVE
Ong = 4 (ha) eB-WIKT 31 = ° (1)

where

dng is the number of electrons per cm.® with energy
between E and E + 3E,

m is the mass of the electron = g-107 10-% gm.

h is Planck’s constant = 6-624 10~% ergs/sec.

¢ is the base of natural logarithms — 2-718.

k is Boltzmann’s constant = 1-381 10719 ergs/degree.

T is the absolute temperature in ° K.

W is an energy which, as will appear below, can be
identified with the energy W in Figs. 3 and 4.

This distribution can also be expressed in terms of
momentum p, giving 3n,, the number of electrons with
momentum between p and p -+ 3p, as

_Or___ 2% @

— Fi ¢E—WIET + 1

Sn_,,

It 1s clear that when T is zero, the value of 3ny in

(1) becomes zero when E > W, and has the value
3/2

‘-g—: ('2——%%— EV2E whenE << W. W is therefore the limiting
value of the energy, which is not exceeded at zero tem-
perature. The distribution function therefore follows
a half-power law, until E = W, when it falls to zero,
as in Fig. 3. - At a higher temperature, the function follows
the dotted curve, showing that a few electrons have energy
greater than W,

If the number of electrons is N/cm.3, the fitting in of
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this density of electrons into the available number of
energy states gives for the height of the Fermi level:

w=EENT L

It is convenient here to introduce the electron volt as
a unit of energy. It is the energy acquired by an electron
in falling through a potential difference of 1 volt, and has
the value 1602 10-1% erg. We find that when N = 10%},
W is 0-38 V., and when N = 102, W is 82 eV. Thus
for different metals, W is of the order of a few electron
volts, and varies with the atomic spacing and valency.

It is important to note that when E is large compared
with W, the distribution more nearly approaches the
Maxwellian one, which would apply to classical particles,
Thus in this case (1) becomes o

2rem)3/2 gW/ATEY 2
ong = « 1{2) 3
™ h

When this is integrated and made equal to N, it is found -
that ¢~ W/*T has the value

2(2remkT)3/?
(nNha) S S (4)

and in this case
211N

STZE =W

This is the Maxwellian distribution for a gas at tem-
perature T, and is evidently encountered when T is large
or when N is small, At low temperatures or high electron
density, the electron gas is * degenerate’, and the distribu-
tion is as in Fig. 3, whereas at the other extremes, the
distribution is Maxwellian. When N is as high as 10%,
eWkT as given by (4) is of the order 100, even when T is -
as high as 3,600° K, and the electron gas is therefore fully
degenerate. In fact, a value as high as this as given by (4)
indicates that it was not true that E> W, and therefore
(4) was not applicable. If equation (4) gives a high value
for eW/*T, the correct value of W must be obtained from (3).

EY2,~-EkT3E . (5)
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4. Electrical Conductivity.—It is supposed that the
free electrons move randomly in the solid with a mean
free path [,, When an ¢lectric field is applied, there is a
drift velocity superposed on the random velocity. The
free path is terminated by collision with an atom (or ion)
of the crystal, and the drift velocity acquired during the
previous flight is assumed lost at the collision. Let the

SnE

Kinetic
Energy

FI1G. 3.—Fermi-Dirac energy distribution

applied field be X, then if the charge on the electron is e,
its acceleration in the X direction is 2. If its velocity
of random motion is v cm./sec., then the time of flight

, : . : : .
in the mean free path is —v!’, and the distance drifted in the

e e e o 1 Xel)? .
X direction in this time is . —"—f ;f‘z" 'Thus the mean velocity

of drift is given by u = i-—),% -i—j' for electrons with velocity

v. For all electrons the mean drift velocity becomes :

— I (mean value of 5) . (6)
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If v, is the maximum speed which an electron can have

I [ ] L
at zero temperature, the mean value of - 18 easily shown

to be zi for a degenerate electron gas. Then, since

Um
W — "—;mvmz = :‘—; (?ﬁ) 2’3,

8n
3m [ 8y L9
the mean value becomes >7 (3N) :
When the drift velocity is #, the current density is
Neu, and the conductivity o is given by o = 15—)?-‘ = Neu,.

uy, the drift velocity in unit field, is called the ‘ mobility’
of the electron. A more rigid treatment of the mean-
drift velocity gives a value 4/3 of that given by (6),'® thus
the present treatment gives finally for o

)

and the more rigid treatment gives

g —

8r 2/, 13N\ 23
3 h ("8;) ' (7)
If experimental values of o are substituted in (%) for
a monovalent metal where N is about 102%%, it appears
that /; is several hundred times the interatomic distance.
'The above theory does not predict this large value, nor
does it explain the fact that o is approximately propor-
tional to 1/T (except at low temperatures). It will appear
later that the conception of collisions between electrons
and atoms is much too crude, and the process is better
described as in interaction between the electrons and the
thermal vibrations of the lattice. In a perfect lattice at
rest, 1.e., at zero temperature, there is no interaction and
the conductivity should be infinite. The deviations of the
lattice from perfection due to impurities and strains
produce a residual resistivity p, at low temperature, and
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it is the value of (p—py) which is proportional to tem-
perature. This increase in p is due to the increasing
movement of the atoms.

Whether the electrons interact directly by collision,
or with the thermal vibrations, it is to be noticed that in
each case the electrons which take part are confined to
those near the top of the Fermi distribution, as in the case
of those electrons which are affected by temperature rise.
The above theory is accurate only if v is large compared
with u, thus in the interactions only a little energy is lost,
and since the states of low energy are all occupied, low-
energy electrons cannot take part in collisions causing
resistance. Similarly, only electrons 4t the top of the
Fermi distribution can be accelerated to contribute to the
net flow.

Yacuum

L 0

Solid ’ / %o

FIG. 4.—Electron levels in a solid at zero temperature

5. Thermionic Emission.—We have seen that at zero
temperature, a2 metal contains electrons with kinetic energy
as large as W in Figs. 3 and 4, and that at higher tem-
peratures a fraction of the electrons have greater energy,
as in Fig. 3. At low temperatures electrons are not
emitted spontaneously from solids, and we therefore
know that W in Fig. 4 is less than AQO. Clearly, if an
electron in the metal at zero temperature can acquire
energy ¢, given by AO — W, it may just escape, and will
have zero kinetic energy on emergence. The value of
AO — W at other temperatures will be described as ¢,
while ¢, is the value of ¢ at absolute zero. ¢ is called
the work function of the solid, and is usually measured
in electron volts. When the temperature is raised, it is
convenient to show in one diagram the energy distribution
with the energy scale vertical, and the potential-energy
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diagram for a boundary between metal and a vacuum,
as in Fig. 5. This involves rotatlng Fig. 3 to follow the
convention of Figs. 1, 2, and 4, i.e., energy increasing
upwards. Then the ‘tail’ in the distribution OP can
escape, and those electrons with kinetic energy AP will
have energy OP after escape.

While, as stated above, electrons with total energy
greater than AO ‘may escape’, it is clear that if the x
direction in a three- dlmensxonal co-ordinate system 1s
made perpendicular to the metal surface, only those

4E

Vacuum

B emm - —— Erw —— — — e pe— —

—— e — — —— o ——t et —_ o —

Solid .

)
. A
FIG. 5.—Energy distribution in a solid at'high temperature

electrons will actually escape whose motion is in the x
direction, and whose energy is greater than AQO, and then
only if there is no surface-reflection effect. We will now
calculate the number of electrons which can escape from
1 cm.2 of surface at temperature T.

If the total momentum p is the vector sum of p,, Py,
and p,, the number of electrons per cm.? with momentum
between p and p + 3p is as in (2)

_ 8n pidp
Consideration of the volume elements in a co-ordinate

system shows that in transforming from polar to rectangular .
B

an
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co-ordinates, the integral over a certain range of a function:
of p is obtained by replacing the quantity 4rpdp by the
product dp,dp,dp,. Similarly, in one plane the product
dp,dp, replaces 2rrdr, where 7 is the resultant momentum
in the yz plane, i.e., r2=p,2+4 p,2 Thus the total
number of electrons with momentum between p, and

Pz + 3p, is given by |
__28p, [ ®  2nrdr

Snx Ina— a!
h3 0 eE WI/ET + I

It is usual to restrict the calculation to the case where,
although T is fairly large, E-W is nevertheless large
compared with kT, so that unity in the denominator can
be neglected.

Since

2mE = r? + p,2
E

3y = %; 3p, eWIKT g—Pa}[2mET [ e~ /3MET yy
0

— %‘ W KT BT ¢—pa'/2mkT §p

This is the number per cm.® with momentum between
pz and p, + 8p,, with values of resultant momentum in
the yz plane over the whole range O to infinity.

The total number passing per second through unit
area perpendicular to the x direction will be obtained by
multiplying 3z, by the velocity v,, and integrating from
O to infinity. However, the number striking unit area
of the boundary which can escape is restricted to those
with momentum greater than p,, where p,2 = 2m . OA.
Thus the number escaping per unit area becomes
e—px’fzka-Ef sﬂt

1
” — % eV KTy BT
Pa m

The current is therefore

I— 4rnmk’T

=0
:___ 4ﬁ€mk2T2
= 7

eET eWIAT g—pad/2mkT

e—¢/FT — A T2e—¢/*T

- (8)
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4memk?®

73
36 . 101! when the current is measured in e.s.u., and 120
when the current is measured in ampéres. This, then,
is the thermionic-emission formula assuming no surface
reflection. It 1s, of course, necessary to measure the two
- energies ¢ and ET in the same units. If ¢ is measured
in electron volts, £ must be measured similarly. It has
the value 8:62 X 1075 eV. per degree.

6. Photo-electric Emission.—It will be clear from the
discussion of Figs. 4 and 5 that a metal at the absolute
zero of temperature can just liberate an electron if the
electron can acquire energy equal to ¢,. The energy
associated with light of frequency v is Av, and incident
light can therefore liberate electrons if its frequency is
equal to or greater than v,, where in appropriate units

hvg=¢9 . . . . . (9

The number of electrons. liberated will be proportional
to the intensity of the light at the required frequency.
If the frequency is greater than v, electrons can be
liberated with kinetic energy greater than zero, and those
which have energy near zero may include electrons from
below the top of the Fermi distribution.

At higher temperatures the distribution becomes as in
Fig. 5, and the thermionic emission becomes so large that
the photo-electric effect is difficult to study. At inter-
mediate temperatures where the thermionic emission is
very small, the photo-emission can occur with light of
frequency less than v, owing to the ‘tail’ in the energy
distribution above the Fermi level. Thus at room tem-
perature, for example, the threshold frequency v, is not
sharply defined.

7. The Work Function.—The theory of free electrons in
a metal has given an indication of the value of W, but so
far the existence of the work function, i.e., of the fact that
W is less than AQO, has been deduced from experimental
observation, and no theory has been presented which
would predict its magnitude. An elementary treatment

The quantity A4, = has the numerical  value
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can be given in terms of the ‘ image force ’, and the surface-
polarized layer. When an electron is withdrawn from a
metal, the metal is polarized, and the force between the
electron and the metal can be represented by the force
between the electron and its ‘ mirror image ’ in the metal.
Thus an electron at a distance x cm. from the surface
induces a positive charge ¢ at ¥ cm. below the surface,
provided x 1s large compared with an interatomic distance
and small compared with the area of the surface. There
is therefore an ‘image’ force of attraction e%/4x%2. 'This
approach leads to an expression ® e2/27, for the energy
to remove an electron from the metal to an infinite distance,
where 7, is of the order of the atomic spacing. 'This
energy 1s taken to be equal to the work function ¢, and
this treatment indicates that ¢ will be larger for metals
of high density. i

The potential energy of an electron in the metal referred
to zero at infinity is not, however, — ¢, but — (¢ + W).
'The change of magnitude W occurs in passing through
the surface electrical field.® This is formed because the
surface layer of atoms is not in equilibrium under the
same forces as atoms in the interior. The change in
potential is shown in detail in Fig. 6. '

Owing to thermal expansion there are variations with
temperature in the interatomic distance, which affects ¢,
in the surface dipole moment, affecting W, and in the
electron density N, which also affects W. If ¢ is assumed
to increase linearly with T @ ® as a result of these changes

‘in¢ and W,
ie., ¢ = g + T
then the thermionic emission equation becomes

_ 4memk?

= T2 e—(do + oT)/kT

= A T2ea/k =42 | (10)

Thus if a ¢Richardson’ plot is made experimentally of



