. Digital Networks and Computer Systems

A"

Ao Y ey e
63205628

4

Digital Networks
and Computer Systems

TAYLOR L. BOOTH

Professor of Electrical Engineering
Computer Science Group
Department of Electrical Engineering
University of Connecticut

JOHN WILEY AND SONS, INC.
New York-¢ London « Sydney « Toronto

Copyright ® 1971 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

No part of this book may be reproduced by any means,
nor transmitted, nor translated into a machine
language without the written permission of the
publisher.

Library of Congress Catalogue Card Number: 71-138906
ISBN 0-471-08840-4

Printed in the United States of America

10 9 87 6543 21

Preface

During the past few years a major shift has occurred in the field of digital
systems and computers. Integrated circuit technology has so sharply reduced
the price of both digital computers and basic logic modules that many of the
tasks that were traditionally performed by analogue circuits and systems are
now carried out by using digital techniques. As a result, many engineers and
scientists have found it necessary to understand the basic operation of digital
systems and how these systems can be designed if they are to carry out par-
ticular information-processing tasks associated with their work.

This trend has resulted in the need for an introductory undergraduate
course in the digital-system area designed to provide a unified overview of
the inter-relationships between digital system design, computer organization,
and machine-language-level programming techniques. Unfortunately most
current texts treat each one of these topics as a separate subject. Although
this approach is desirable (and even necessary) for books that are to be used in
the more advanced computer engineering and computer science courses,
a new approach is needed for introductory courses. That is the goal of this
book.

This book provides the reader with an integrated overview of various classes
of digital information-processing systems and the inter-relationship betweén
the hardware and software techniques that can be used to solve a particular
information-processing problem. The unifying theme throughout the book
is the concept that the steps involved in an information processing task are
representable by an algorithm and that the task of a designer is to choose
the best techniques to use in executing each step of the algorithm. In some
cases it is obvious that these tasks can be carried out by a simple digital net-
work while, at other times, a complex computer program is required. How-
ever, there is an ever-increasing gray area between these two approaches in
which many different alternatives must be considered before the best solution
can be identified. By giving the student a view of the interdependencies of
logic design, digital-system design, and machine-level programming, it is
possible to provide him, early in his program, with an appreciation of how all
these different areas of computer technology interact.

vii

viii PREFACE

At the University of Connecticut this book is used in the first professional
level computer science course. Since the only prerequisite to this course is an
introductory programming course, many students from areas such as mathe-
matics, statistics, the physical sciences, the life sciences, engineering, and
students planning on majoring in computer science take this course. This
serves the dual purpose of preparing students for advanced study in the
computer science area and of giving other students an overview of digital

networks and computers beyond that presented in the introductory comput-
" ing course.

All electrical engineering and computer science majors take this course
as a required course. Because of scheduling considerations, most of these
students take the course during the first semester of their junior year. How-
ever, many sophomores have completed this course without difficulty and
future changes in the curriculum are planned that will allow this course to
be taken either during the sophomore or junior year. In fact, there is no
reason why this course could not be taken by freshman students, since there
is no specific mathematical background required of the student other than
an understanding of high school level mathematics.

At other schools this book is suitable for an introductory digital systems
course such as envisioned by the COSINE Committee of the Commission on
Education of the National Academy of Engineering or for courses I3 or 16
of the ACM Curriculum 68 (Communications of the ACM March 1968, PP-
151-197).

The sequence in which the material is presented provides for an orderly
and logical transition from the basic ideas of representing digital information
and performing basic logical operations through the idea of complex in-
formation processing systems and programs. Chapter I gives a brief overview
of the various topics discussed in the book and their interrelationships. Chap-
ters 11 and III present a discussion of the techniques that- can be used to
represent and operate upon information in digital form. The material in
Chapters 1V, V, and VI provide an introduction to basic switching theory and
combinational logic network design. The main concepts of switching theory
are presented in a straightforward manner without excessive formalism. This
material also illustrates many of the standard logic circuits encountered in
digital systems.

Chapters VII, VIII, and IX deal with the idea of digital networks with
memory. Several of the basic memory elements are first discussed and then
the idea of a synchronous sequential network is introduced. No attempt is
made to treat asynchronous networks. Chapter IX is parucularly important
since it shows how the simple digital hetworks treated in the earlier chapters
can be combined to form complex digital systems.

Chapter X introduces the general ideas behind the operation of stored

PREFACE IX

program digital computers. In particular, a special simulated educational
computer, called SEDCOM, is introduced to illustrate these ideas. SEDCOM
is then used in Chapter XI to illustrate the idea of machine-language pro-
gramming and the various programming techniques that can be used to carry
out different types of information processing tasks on a small computer.
Chapters XII and XIII then discuss the general structure of assembler- and
procedure-oriented languages and the translator programs that can be used
to transfer source-language programs into object-language programs.

At the University of Connecticut we cover the first twelve chapters in detail
and briefly discuss the material in Chapter XIII as time permits at the end
of the semester. Dr. Bernard Lovell of our faculty has developed a program
to simulate SEDCOM on our Computer Center’s IBM 360/65. We therefore
require our students actually to write and run a number of the home prob-

“lems in Chapters X through XIII on this simulated computer. Students
can also use special logic breadboards in our digital system laboratory to obtain
additional insight into the operation of digital networks.

In order to provide an aid for the student and to help the independent’
reader, a number of simple exercises are included at the end of each section
to illustrate the material of that section. The answers to many of these exer-
cises are included in Appendix 1. Several home problems are included at the
end of each chapter. These problems are extensive in nature. They extend the
material contained in the chapter and start the student thinking about one
or more new concepts that will be discussed in one of the following chapters.
The references at the end of the chapter guide the reader who is interested
in the further exploration of a given area. A Teacher’s Manual is available
from the publisher upon request for those instructors who adopt the text for
classroom use.

I am indebted to many people who have helped in the development of this
book. The following persons read the manuscript at various stages of its
development and offered a number of very helpful suggestions: William
Hammond of Bradley University, Frederick Hill and Gerald Peterson of
the University of Arizona, David Evans of the University of Utah, Alan
Marcovitz of Florida Atlantic University, James Pugsley of the University of -
Maryland, Donald Dietmeyer of the University of Wisconsin, Donald Epley
of the University of Iowa, Chester Carroll of Auburn University, Gale Miner
of Brigham Young University, Stanley Altman of the State University of
New York at Stony Brook, C. L. Coates and Garnot Metze of the University
of Illinois, and A. J. Pennington of the Drexel Institute of Technology.
In addition to the assistance of the aforementioned, I was very fortunate in
having the opportunity to have this material Class Tested at the University of
Maryland under the guidance of Professor Marshall Abrams. One very
important and continuing source of suggestions has been from my colleagues

X PREFACE

Yi-Tzuu Chien, Elliot B. Koffman, John L. C. Lof, Bernard W. Lovell, and
Howard A. Sholl who have made extensive comments and suggestions
during the complete evolution of this book from the first set of rather in-
complete and sketchy classroom notes. The task of writing this book has been
* simplified considerably by the help of my Wiley editor Donald C. Ford. The
ability of Mrs. Norma Gingras to transform my illegible handwriting into
typed copy is also deeply appreciated. Finally, I thank my wife, Aline, for her
patience and encouragement throughout the development of this book.

Mansfield, Connecticut, 1970 TAYLOR L. BOOTH

Contents

II.
111
IV.

II.
II1.
Iv.

VI.

11
1148
Iv.

II.
111
1v.

I Introduction to Digital Systems

Introduction
Algorithmic Processes
Digital Networks
Computer Programming
Summary

I Dugital Information and Digital Arithmetic

Introduction

Representation of Digital Information
Coding of Information-

Arithmetic Operations

_Floating Point Numbers

Summary

IIT Combinational Logic and Network Representation

Introduction

Representation of Logical Functions and Operations
Canonical Forms of Binary Functions

Reduction of Logical Specifications to Logical Expressions
Summary

IV Combinational Logic Circuit Elements

Introduction

Logic Circuit Symbols
Electronic Logic Devices
Mechanical Devices
Summary

xi

-
O N = =

16
20

22
22

25
41
52
55

58

58
58

68
74

71

77
77
79

89

xii

I1.
I11.
IV.

1L
II1.
IvV.

II.
III.
Iv.

I1.
I11.
IV.

II.
III.
IV.

CONTENTS
V Switching Algebra and Logic Nettork Realization

Introduction

Switching Algebra

Logic Network Reduction Using Boolean Algebra
Complex Combinational Logic Networks
Summary

VI Minimization of Combinational Logic Networks

Introduction

Minimization by the Map Method
Minimization by the Tabular Method
Multiple Output Logic Networks
Summary

VII Flip-Flops, Registers, and Memory Units

Introduction

Flip-Flops

Registers

Magnetic Cores and Core Memory Units
Summary

VIII Introduction to the Analysis and Design of
Synchronous Sequential Networks

Introduction

Analysis of Synchronous Sequential Networks
Design of Synchrpnous Sequential Networks
Specification of Transition Tables and State Tables
Summary

IX Digital Systems

Introduction

Representation of Information Flow in Digital Systems
Control of Information Processing Tasks

Design of Digital Systems

Summary

X Stored Program Information Processors and
Computers

Introduction

93

93
93
101
108
118

122

122
125
136
146
155

158

158
158
171
180
189

192

192
192
203
210
224,

228

228
228
236
248
269

272
272

CONTENTS Xxiii

1II. System Organization 273
ITI1. The Control Unit 281
IV. SEDCOM 291
V. Summary 309
XI The Computing Process and Machine-Language
Programs 314
[. Introduction 314
II. Basic Programming Concepts 315
III. Numerical Calculations 335
IV. Symbolic Calculations 344
V. Summary 350
XII Assembler Languages and Assemblers 352
I. Introduction 352
II. A Simple Assembler Language 353
II1. The Structure of A Simple Assembler Program 366
IV. Additional Assembler Concepts 379
V. Summary 387
XIII Programming Languages and Compilers 391
I. Introduction 391
II. Programming Languages 392
II1. The Translation Process 402
IV. The Translation of Arithmetic Expressions 409
V. Translation of Complete Statements 423
VI. Summary 430
Appendix I 432

Index 447

CHAPTER]

Introduction to Digital Systems

1. Introduction

Because of the increasing complexity of civilization, man has been forced
to continually develop better and more efficient techniques to process and
utilize information. Initial attempts at developing information processing
aids centered around improving methods of carrying out mechanical manip-
ulations of numbers. During the 17th centry many of the leading mathe-
maticians and scientists developed calculating devices to aid them in their
" research. As industrial technology developed during the 18th and 19th cen-
turies, these basic ideas were refined and extended to develop complex
mechanical devices that could be used to control machines and aid businessmen
in performing repetitive calculations and bookkeeping tasks.

In the early 1800’s Charles Babbage proposed and attempted to construct

a device that he referred to as an analytical engine. Conceptually this device

was similar to our modern digital computers. Although he was able to build
a simple model of his machine, he was never able to complete the construction
of a machine that would handle practical problems. One of the reasons for
his failure was that the design called for so many moving mechanical parts
that the inherent friction between the various parts prevented satisfactory

operation of the complete machine. Even though Babbage failed to develop

a practical device, many of the concepts that he developed laid the foundation

for the design concepts of modern computers.
Computers, as we know them today, have become practical only bemuse
we have been able to replace mechanical devices with electronic devices. In

the late 1930’s and early 1940’s a series of relay computers were built through |

the joint effort of Harvard University, Bell Telephone Laboratories, and IBM.
Although these computers operated saUsfactonly, they were quickly super-
seded by electronic computers.

In 1946 J. P. Eckert and Dr. J. W. Mauchly developed the first electronic
computer, the ENIAC, at the Moore School of Engineering at the University

of Pennsylvania. This computer contained 18,000 vacuum tubes. ‘Vacuum -

tubes were so unreliable at that time that the predicted mean time to failure
1

2 INTRODUCTION TO DIGITAL SYSTEMS

was shorter than the mean time to repair the device. Nevertheless the com-
puter did work and was used by the U.S. Army for a number of years.

As the capability of computers and digital systems became better under-
stood, many major technical advances were made. With the introduction of
the transistor in the early 1950’s, it became possible to design and construct
highly reliable computers. We have now reached the point where there are
a large number of manufacturers that are producing computers of various
sizes and capabilities with prices that range from a few thousand to many
millions of doliars.

The majority of people who come in contact with computers can be classi-
fied as occasional computer users. Their main interest is to use the computer
to carry out the routine data processing task or calculations needed as part of
their work. By using procedure-oriented languages such as FORTRAN,
COBOL, or PL/1, these people are able to carry out data processing tasks
without worrying about the internal organization or structure of the computer.

The high information processing rates of modern computers, however,
makes it possible to apply computers to a variety of information processing
tasks that were not even conceived of before the development of modern com-
puters. Consequently just as an engineer or a scientist must understand the
limitations of the physical laws of nature he must also develop an understand- -
ing and appreciation of the laws dealing with the utilization, processing, and
transmission of information. -

This book has been designed for the person who has reached the point
where he wishes to use a computer as more than a calculating device to solve
routine problems. Consequently we first investigate the mathematical techni-
ques that are used to describe and analyze digital networks and systems. Next,
the methods that may be used to design combinational and sequential logic
networks, which are found in every digital system and computer, are pre-
sented. Once the operation of these basic building blocks is understood we
then consider how they can be used to form complex data processing devices
and general purpose digital computers. Finally, we consider the various types
of programming systems that can be used to program a computer and how
they are related to the efficiency of the overall information processing system.

II. Algorithmic Processes

Two of the major problems in designing a complex digital information
processing system concern:

1. The identification of the various fundamental infermation processing
tasks that must be accomplished.

2. The specification of the component parts of the system needed to carry
out these tasks.

ALGORITHMIC PROCESSES 3

From an abstract viewpoint, the complete computational process carried
out by any digital information processor or computer can be formally repre-
sented by the mathematical relationship

F(x)=»

where x represents the data presented to the processor, F(x) represcpts the
computation performed on the data and y represents the results of this com-
putation. The computation represented by F(x) can take many forms.

In the simplest case, the processor might be a simple logic network that
takes the current value of n input variables, [x,,xs, ..., x,], and immediately
produces an output f(x,, X, . . . , X,). On the other hand, the processor might
be a large-scale computer system that measures the status of a chemical
production process and produces output signals to control the rate at which
certain chemical reactions are allowed to take place.

For each of these information processing tasks or any other tasks that we
might wish to perform, there is only one restriction that we must place on the
computation represented by F(x). We must be sure that there is an explicit
and unambiguous set of instructions that tells us how to perform the computa-
tion. This set of rules is called an algorithm for the computation of F(x).

Algorithm. We say that an algorithm for the computation’ F(x) = y exists if
there 1s an ordered sequence of discrete steps that can be performed mechan-
ically by a device such that given x the device either:

(a) formsy = F(x) by executing these steps in the prescribed order, or
(b) indicates that no y exists that satisfies the conditions of the computation.

The device must require only a finite number of steps to reach one or the other
of these decisions. ' _

From this definition we see that if we are to implement an algorithm on a
digital device we must reduce the steps of the algorithm to a sequence of
elementary operations that can be performed by the device. In some cases the-
device will consist of a simple digital network constructed to perform the com-
plete computation in one step while in other cases the algorithm for the com-
putation will be so complex that it requires a large number of steps and can .
only be implemented on a large-scale digital computer. We now investigate the
general properties of algorithms as they relate to the design and utilization of
digital information processing devices. This will, in turn, allow us'to gain an
insight into the interrelationship between the organization of digital networks
and computers and the computational processes that can be carried out by
these devices. Our first task is to define what we mean by an “elementary
operation.”

We automatically carry out an algorithm every time we perform a particular

4 INTRODUCTION TO DIGITAL SYSTEMS

mathematical or logical operation. However, we seldom give any thought to
the form that this algorithm takes. This is because our previous experience
has taught us to associate fixed reactions and interpretations to different mathe-
matical symbols. However, if we wish to describe how we carried out a given
calculation to someone who does not have our background we must explain,
in great detail, how the computation is performed.

For example assume that we wish to compute the sum of the three two-digit
numbers ' '
' A=aa, B=bb D=d,d,

Normally we would probably carry out the addition in our heads, write down
the answer R ' '

— Y =A4+B+D = ygyy

and consider our problem solved. Most computers cannot simultaneously add
three numbers together. They must, instead, perform the calculation in two
steps as:

Stepl R,=A-+B
Step2 Y=R,+D

Thus, if we assume that we ean use the elementary operation of adding two
numbers together, our calculation can be completed by using a two-step
algorithm. However, let us consider what would happen if the computing de-
vice that we had could only add two digits at a time. Should this be the case we
would have to replace both step 1 and step 2 with a sequence of steps that
would describe how the two numbers are to be added together digit by digit.

The elementary operation in this case would be digit addition which can be
formally defined by o

u;
4
¢ S8

where s, is the unit sum of the two digits and ¢ is the carry. For example let
u;=9and v; =5. Then .

wlon O

1
and we see that¢; = 1 and s; = 4.
It is possible to build a device to compute the two functions

5= Fy(ug, vy)

and

If we must use this device to compute

then we could use the following algorithm:

ALGORITHMIC PROCESSES 5

= Fy(u;, vi)

Y=A+B+D

Algorithm to compute

Y=

A+B+D

First Part

Example of Calculation
Performed Using Algorithm

Compute R =A+B Y=25+34+98
Stepl 71, = Fy(ay, by) n=9="F(5,4)
Step 2 6= Fz(a‘, bl) €= 0= Fg(ﬁ, 4)
Step3 p. = Fi(a,, by) p=5=F\2,3)
Step4d 1, = Fy(ps, ¢p) rp=5=F(5,0)
Step5 . my = Fy(as, by) my = 0= Fy(2,3)
Step6 1y = Fy(py, 1) ny = 0= F,(5,0)
Step 7 ¢y = Fy(my, ny) ¢ = 0= Fy(0,0)

Second Part

Y=R+D
Step8 y,=F,(ry, dy) Nn=T7="F(9,8)
Step 9 C; = Fz(Tp d[) C; =1= Fz(g’ 8)
Step 10 py=F, (75, d,) Pé=4;Fl(5, 9)
Step 11y, = F,(p3, c}) Y =5=F41)
Step 12 mj = Fy(ry, dy) ms=1=F,(5,9)
Step 13 n; = Fy(p}, c}) ny=0="F,(4,1)
Step 14 ¢, = F,(m), n}) e =1=F(1,0)
Step15 33 =F,(c}, c,) »=1=F(1,0)

Result Result
Y = 33953 Y = ysypy, = 157

This algorithm actually represents the following very simple addition

process.

ComputeR =4+B

ComputeY =R+D

Stage 1

Stage 2

0, 0, Carry
0125 A
04314 B
0 5 0 R
1 1, Carry
059 R
0\9:8 D
15 7 Y

6 INTRODUCTION TO DIGITAL SYSTEMS

Thus we see that the set of basic operations that we can use affects the com-
plexity of an algorithm. The example also illustrates how we can solve the
problem. When we are working with a system there will usually be a sequence
of operations that are used enough times to justify attaching a functional
name to them. Thus we could define a function

FU, V)= U+V

that stands for the steps needed to form the sums in the above algorithm. The
algorithm then goes back to

Stepl R =Fs(4,B)
Step2 Y =Fg(R,D)

This idea of taking a sequence of simple operations and defining a new
operation to represent this sequence is used repeatedly throughout this book.
In this way we can concentrate on the important concepts being presented
without worrying about the fine details of how each step of the process is
actually implemented.

Flow Chart Representation of Algorithms. One of the most convenient ways
to represent an algorithm is by means of a flow chart or flow diagram. A flow
chart is a graphical representation of a particular algorithm that indicates the
logical sequence of operations that are to be performed by the device that
executes the algorithm. The flow chart is basically a collection of specially
shaped boxes and directed lines. The contents of each box indicate which
operations are to be performed while the lines that interconnect the boxes
indicate the sequence in which the instructions are to be performed.

A very elaborate flow-chart symbology has been evolved by computer pro-
grammers. However, for our needs in this book we will limit our flow chart
symbols to those illustrated in Figure 1-1. Reference 6 at the end of this chapter
presents an extensive discussion of flow-charting techniques.

Each instruction box and decision box will contain one or more expressions
describing how the basic operations are used to carry out the calculations. It
is assumed that the reader has been introduced to computer programming
in sufficient detail to be aware of how flow charts are used. The following
example will serve to review these ideas.

Assume that we wish to calculate the roots of the equation ax?+ bx+c. If
a # 0 then these roots are given by

_=b+V¥—dac _—b=VF—dac
B 2a T 2a

41

The simplest possible flow chart for finding r, and r, is given in Figure 1-2.

ALGORITHMIC PROCESSES 7

The Beginning of a Process The End of a Process
(a) (b)

An Instruction Box A Decision Box
Perform Operations Called for The exits are labeled and the appro-
In Box priate one is taken according to the
© result of the computation called for
in the box
d)

Figure 1-1 Basic flow chart notation. (a) The beginning of a process. () The end of a process.
(¢) An instruction box performs operations called for in box. (d) A decision box. The exits are
labeled and the appropriate one is taken according to the result of the computation called for in
the box.

However, if we examine this flow chart we see that it is not much different
from our initial statement of the problem. In particular, it assumes that we
have two basic operations corresponding to

—b+ Vb —4ac

Sila, b, c) = %

and

—b—Vb—4ac

fla, b, c) = _T_‘
: a

that can be evaluated to find r, and . Since these two functions are somewhat

specialized, it becomes desirable to break the calculation down into smaller

parts. Before we can do this we must consider some of the problems that must
be overcome. '

