Practical

‘ M1cr0processor
Interfacing

Practical
Microprocessor
Interfacing

S. A. Money
TEng (CEIl) MiEleclE MBCS

¥

Collins
Professional
Books

8 Grafton Street London W1X 3LA

Collins Professional Books
William Collins Sons & Co. Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Collins Professional Books 1987

Copyright © S. A. Money 1987
British Library Cataloguing in Publication Data

Money, Steve A.
Practical microprocessor interfacing.

1. Computer interfaces 2. Microprocessors
I. Title
004.6'16 TK7887.5

ISBN 0-00-383329-1

Typeset by Katerprint Typesetting Services, Oxford
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may

be reproduced, stored in a retrieval system or transmitted.

in any form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the
publishers.

Preface

Modern electronic equipment is frequently based around the use of a
microprocessor which provides the major part of the control logic. In
order to be useful any microcomputer based system must provide some
means of getting signals into and out of the microcomputer, to allow
communications with the outside world. The more popular general
purpose microprocessor chips such as the Z80, 8085 and 6800 series
provide only a basic Central Processing Unit (CPU) with no direct
facilities for input and output of signals. All of these microprocessors
operate with a set of bus systems which provide signal links between
the CPU, memory and any other devices attached to the system. Some
form of interface circuit is normally required to allow signals on the
microcomputer bus system to be coupled to external equipment. In
this book we shall be looking at the techniques for interfacing between
the microprocessor bus system and the outside world.

The first two chapters of the book take a brief look at the structure
and timing of the signals on the microprocessor bus system. All
microprocessors need some form of memory system to hold the pro-
gram instructions and any data to be processed. In Chapter 2 the basic
principles of memory devices are examined and their connection to the
bus system for the various types of processor is explained.

Perhaps the most straightforward method of getting signals into and
out of a microprocessor system is by using a parallel interface. In
Chapter 3 the basic principles of simple parallel input and output ports
are discussed, and the techniques of interfacing these ports to the CPU
bus system are examined. Some processors, such as the Z80 and 8085,
have dedicated instructions and a separate addressing system for hand-
ling input and output data transfers, whilst the 6500 and 6800 series
processors treat all input and output devices as if they were locations in
the memory system. The arrangements for handling both dedicated
and memory mapped I/O systems are examined. Later the chapter goes
on to look at programmable input—output port devices, and some of
the specially designed parallel interface chips.

Some typical applications of parallel input-output ports, including
the connection of switches and keyboards and the drive circuits of

Preface v

lamps and relays, are examined in Chapter 4. The principles of driving
stepper type motors are also explained, and the chapter goes on to
look at two standard parallel interface schemes which are commonly
used with microcomputer systems. The first is the Centronics parallel
interface, which is used to provide a parallel output channel for driving
printers and plotters. The second standard interface dealt with is
IEEE488 General Purpose Interface Bus. This is a parallel data bus
system, used for connecting laboratory instruments and similar equip-
ment to a microcomputer system. The operation and organisation of
the IEEE488 bus is explained, and a simple method of implementing
this type of bus is given.

When signals are to be transmitted over long distances, or via a
radio link, the serial type of data transmission format is generally used.
In Chapter 5 the basic principles of serial transmission are explained.
Both asynchronous and synchronous forms of transmission are dealt
with, and the basic RS232 type interface scheme for serial signals is
explored. The following chapter looks at some of the special interface
chips designed for implementing a serial input-output interface. This
chapter also looks at the actual line signals and deals with both the
RS§232C and the newer RS422A and RS423A type signal schemes.

Counting and timing are activities which are frequently required in a
microcomputer system. It is possible to implement both counting and
timing functions by using a software approach, but this tends to be
inefficient. It is better to make use of external hardware to perform
these functions, thus allowing the processor to carry out other tasks. In
Chapter 7 the basic techniques for interfacing simple counters and
timers to a CPU are explored, and the methods for measuring time
periods, signal frequency and pulse width are explained. The chapter
goes on to look at special counter timer chips and a typical real time
clock chip.

In the real world outside the microcomputer most of the signals and
parameters being measured are analogue in form, whilst the signals
within the CPU are all in digital format. To interface between the real
world and the CPU, some form of conversion between the analogue
and digital forms of signal is required. Chapter 8 looks at some of the
techniques for producing analogue output, and the arrangements for
interfacing digital to analogue converters to the CPU bus systems. In
Chapter 9 the techniques for inputting analogue signals are examined
with a look at the common types of analogue to digital converter and
their basic characteristics.

In a microcomputer system that has to operate in real time, as for
instance in a control system, it is important that the CPU should be
able to respond immediately to hardware signals from the external
world. Although this can be done by regularly checking the input lines
using a software polling scheme, a more effective method is to make

vi Preface

use of the interrupt facility which is provided on all modern general
purpose microprocessors. The final chapter examines the interrupt
facilities provided on the popular 8 bit microprocessors, and explores
the basic principles of using hardware interrupts with a micro-
computer to allow an external hardware signal to influence the pro-
gram execution directly.

S. A. Money

Contents

Preface

1

O 0 NN B W N

10

CPUs and Bus Systems
Memory Systems

Parallel Input and Output
Practical Parallel Interfaces
Serial Data Principles

Serial Interfaces

Counting and Timing Systems
Analogue Output

Analogue Input

Interrupt Operation

Appendix 1: ASCII Code Table
Appendix 2: RS232C Full List of Signals
Appendix 3: Full List of RS449 Signals
Further Reading

Index

v

25
47
86

118

141

163

184

207

224

237

240

241

243

245

Chapter One
CPUs and Bus Systems

The basic arrangement of virtually all current microcomputer systems
follows the pattern shown in Figure 1.1. At the centre is the CPU
(Central Processor Unit) which contains the complex logic that inter-
prets the user’s instructions and then controls the overall computer
system to execute those instructions. The instructions themselves form
what is called the program and consist simply of numbers which are
stored in a memory unit. The memory unit is also used to hold data
that is to be processed, intermediate answers and the final results of a
computation. In any computer system, if it is to be of practical use,
there must be some means of feeding data and instructions into the
system and of outputting results. This is achieved by using a series of
input and output ports which connect the CPU to the outside world.
The CPU, memory and input—output circuits are tied together by three
sets of wires, each of which is known as a bus.

CPU

v 1

Inputs — Qutputs
— »
ADDRESS ; - QUTPUT
—»{ PORTS | o

'y

MEMORY

Fig. 1.1 Basic organisation of a microcomputer system.

2 Practical Microprocessor Interfacing

The data bus is used to carry data between the CPU and the memory
or the input-output channels. This bus also carries the instructions
from the memory to the CPU so that they can be executed. The data
bus is bi—directional allowing signals to be passed either to or from the
CPU over the same set of wires. The CPU itself controls which
direction data will flow across the data bus. When data flows from the
CPU this is referred to as a ‘write” operation whilst a data flow into the
CPU is called a ‘read’ operation. Typical current CPU devices use
either 8 or 16 wires for the data bus.

A second set of wires forms the address bus which provides a set of
signals, known as the ‘address’ that is used to select a particular
memory location so that data may be transferred between the CPU
and that location. On the address bus data always flows from the CPU
to the external device. Where there are several input and output
channels in the system the address bus may also be used to select a
particular channel for connection to the data bus. Most of the popular
microprocessor devices use a 16 line address bus but some of the more
complex types, such as the 8086 and 68000, use 20 or 24 address lines.

The third bus is a control bus which carries a number of control and
timing signals out from the CPU and also allows control signals to be
fed into the CPU. This bus is used to link the timing and operation of
the various parts of the system so that the memory or input—output
devices can be connected to the data bus at the appropriate times when
the CPU is ready to carry out a data transfer. Read and write control
signals from the CPU are used to indicate which way the data is to flow
across the data bus wires and these signals allow the memory or I/O
circuits to be set up either to receive data or to send it to the data bus.
Other control signals are used to indicate when a valid address is
available on the address bus and other signals may be provided to
indicate whether the data transfer is to be made with the memory or an
I/O channel.

In a computer system used for straightforward computation the
input will generally be from a keyboard and output may be to a visual
display screen or to some form of printer. In a computer that is used
for control applications the inputs may be signals from transducers
which are measuring real physical parameters on the process being
controlled and the outputs will often be analogue signals which control
the process equipment to achieve the required performance. Like the
memory section the input and output ports are coupled to the CPU via
the data and address buses.

The popular general purpose microprocessor chips, such as the 6809
and Z80 provide only the basic CPU function and will need to have
memory and input—output ports added to them in order to produce a
working system. The process of connecting these circuits to the com-
puter is usually referred to as interfacing. In this book we shall be

CPUs and Bus Systems 3

examining both the principles and practical aspects of providing the
interfaces between the CPU and memory or input—output channels.
Before going on to look at the actual process of interfacing devices to a
CPU it might be as well at this point to examine the bus systems and
timing arrangements of some of the more popular general purpose
MiCTOprocessors.

Logic signals and devices

In all digital logic systems the actual signals used have only two basic
states which are generally referred to as the 0 and 1 states and these are
defined by the voltage level of the signal. Typically the O state is a
signal with a value of less than +0.5 V and the 1 state is usually
represented by a signal which has a voltage level of +2.5 V or more.
All of the popular microprocessors work with a single +5 V power
supply line and in most cases the actual voltage for a 1 level will be of
the order +4 to +4.5 V. Other names for the 0 level are ‘low’ or ‘“false’
whilst the 1 level may be referred to as a ‘high’ or ‘true’ state.

Since a digital signal on a single wire has only two possible states it
can represent only the numbers 0 and 1. In order to deal Wwith larger
numbers the combination of states on a set of wires is used where the
signal on each wire is referred to as a ‘bit’ and the combination of bit
states on a set of wires is called a ‘word’. Each bit in the word is
allocated a weight which is a power of 2 so that working up from the
least significant end of a word the bits represent units, twos, fours,
eights and so on as shown in Figure 1.2.

Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit
7 6 5 4 3 2 1 [+

Numeric

128 64 32 16 8 4 2 1
value

Fig. 1.2 Layout and bit values of a data word using the binary code system.,

If we consider the typical 8 bit word passed across an 8 line data bus
the most significant bit will have a value of 128 (27) and if all of the bits
in the word were set at 1 the value of the complete word is 255. Thus
for an 8 bit system numbers from 0 to 255 can be represented by a
single data word. For each additional bit added to a data word the
range of possible values is doubled, so for a 16 bit word numbers from
0 to 65535 can be represented. This method of coding the logic data
signals is referred to as pure binary code. Various other coding meth-
ods may be used for the basic binary data to suit the needs of the
computer system and we shall look at some of these later in the book.

4 Practical Microprocessor Interfacing

Various types of circuitry are used in making the CPU chips and the
other logic chips that are needed to drive peripheral circuits around the
CPU. Most of the current CPU chips use some form of NMOS (N
channel Metal Oxide Semiconductor) technology for the fabrication of
the chip. This provides fairly high speed operation with relatively low
supply current but the output circuits are usually rather limited in the
amount of current that they can handle. Another popular form of
construction for the CPU is CMOS (Complementary Metal Oxide
Semiconductor) which has the advantage of very low current consump-
tion and high tolerance of power supply voltage variations.

For supporting logic devices the most popular type is the 74 series
TTL (Transistor Transistor Logic) range of circuits. There are in fact
several variations of the 74 series devices. The original standard 74
series logic circuits give quite high switching speed but require fairly
high supply current so that a complex logic circuit can make very heavy
demands on the power supply. A low power series with 74L type
numbers is available in which the devices have a reduced supply
current requirement but provide a much lower switching speed. In fact
the 74L series devices are generally too slow in operation for use in
modern microprocessor circuits. A more recent development is the
74S Schottky series which have similar characteristics to the standard
74 range but with much higher switching speed. A low power version
of Schottky TTL, called the 74LS series, can be obtained and these
circuits combine low power consumption with roughly the same oper-
ating speed as the standard 74 series. For most applications in modern
microcomputer systems the 74LS series devices are generally used to
provide the support and interface circuits needed around the CPU
chip.

Another popular type of logic circuit is the CMOS variety which
have type numbers in the 4000 series. The CMOS circuits have the
advantage of extremely low power consumption and a relative insensi-
tivity to power supply variations which makes them ideally suited for
use in portable equipment which is operated from a battery supply.
Some types of CPU are also available as CMOS versions. In general
the basic 4000 series devices do not have a sufficiently high switching
speed to operate properly with a modern CPU running at its maximum
speed but faster versions of the CMOS circuits are available to meet
the speed requirements of typical CPUs.

A TTL logic circuit in the 74 series has an input circuit which when
pulled down to the 0 level provides 1.6 mA of current which must be
absorbed by the driving circuit. This ‘sink’ current of 1.6 mA is called a
staqdard TTL load and the normal 74 series output stages are designed
to sink a current of 16 mA so that they can successfully drive up to 10
standard TTL input circuit§. The LS versions are able to drive uptos
standard TTL inputs. The Input load for an LS type circuit is however

CPUs and Bus Systems 5

only 0.4 mA so an LS type output will drive up to 20 LS type input
circuits.

Logic output circuits

The conventional TTL logic gate or flip-flop circuit normally has a
totem pole type output stage which actively drives the output to either
the 0 or 1 logic level. A typical totem pole circuit is shown in Figure
1.3(a). If two such outputs are connected in parallel they would
become mutually destructive if set to different levels with the result
that one or both of the output transistors in each device could be
destroyed. Where several circuits are to drive a common set of bus
wires some alternative form of output stage is required to avoid this
potentially catastrophic situation.

One solution is the open collector output circuit such as that shown
in Figure 1.3(b). Here the upper transistor has been removed. To work
properly this circuit requires an external pull up resistor which will
complete the path between the output collector and the positive supply
rail. When the output stage is turned off no current flows through the
resistor and the voltage at the output terminal rises to the 1 level.

+S Vv

Output

—

Ov
Fig. 1.3 (a) Totem pole type output stage.

+5 V +5 Vv

R Pull upresistor

- — Qutput

>

ov

(b) Wired OR type output circuit.

6 Practical Microprocessor Interfacing

When the output stage turns on it draws current and pulls the output
voltage down to the 0 level.

If a second open collector stage is connected in parallel it has no
effect when its output stage is turned off but it also will pull the output
line down to the 0 level when its output stage is turned on. When one
stage pulls down the output it merely diverts current from any other
stage that is turned on but cannot cause damage to the other output
circuits connected to the common signal rail. This form of connection
is called wired OR since the output falls to 0 if either one OR other of
the circuits driving the common point goes to the 0 level.

With a wired OR system the value of the pull up resistor must be
high enough so that one single output stage drawing current through
the load is able to pull the output voltage down to the 0 level and still
sink current for any other logic inputs that are to be driven. The load
to ground which can be connected across such a circuit must have a
sufficiently high resistance that when the circuit is at the 1 level the
current drawn by the bus circuit does not pull down the logic level
below the 1 state.

Although the wired OR configuration is convenient where a number
of devices are driving a common data line this mode does have some
disadvantages in terms of drive capability and speed of operation. An
alternative output arrangement for logic devices is known as a tri-state
output.

Normal logic devices have two basic output states which produce the
1 and 0 logic levels and actively drive the output line. In a tri-state
output circuit the output stages can be disabled so that the output
circuit effectively becomes an open circuit. This third disabled state
allows other logic devices to drive the output data line with no danger
of destruction of the output transistors. When the tri-state device is
required to drive the output line its output circuit is enabled and once
again it acts as a normal logic output circuit. Only one device must be
allowed to drive the common line at any time, so when one device is
enabled all other circuits driving that line must be disabled by switch-
ing them into their tri-state or open circuit mode. Tri-state logic
circuits are almost universally used for driving the data bus of a
microprocessor system with the state of each device determined by
control signals from the CPU so that the correct device is enabled to

the data bus according to the data transfer action called for by the
CPU.

The Motorola 6800/6809 CPU

Let' us start by examining the Motorola series 6800 microprocessors
which have a straightforward and easy to understand bus system and

CPUs and Bus Systems 7

timing sequence. This range of processors includes the original 6800,
the 6802 and the 6809. The 6800 and 6802 are basically identical except
that the 6802 has built in clock generation circuits and a slightly
different pin layout. The 6809 is a more advanced version of the 6800
with more internal registers and an enhanced instruction set but its
basic operation is similar to that of the 6800. Like the 6802 the basic
6809 has built in clock generation circuits although one version is
available which uses an external clock in the same way as the 6800. The
pin connections and signals for the 6802 are shown in Figure 1.4 whilst
those of the 6809 are shown in Figure 1.5.

Vsg —1 L] 40 RESET
RALT ——m=]2 39— EXTAL
MR 3 38 —— XTAL
iRG —{4 iy SRR
VMA a—5 36f—— RE
NMI —5 35 ———— Vce STANDBY
BA -7 3L— RIW
Vee 8 33 ft—» DBO
A0 -—9 32 —» DB
A1 «—10 6802 31 [— DB2
A2 -t 30— DB3
A3 w12 29 ft— DB
Ad {13 28 [-—p DB5S
AS -1 27 —p DB6
A6 -«—]15 26 [-t—» DB7
A?7 -—16 25— A1S
A8 w—]17 2% |—m AL
A9 -«—18 23— A13
A0 -—]19 24— A12
A1 20 21— Vg

Fig. 1.4 Pin connections and signals for a 6802 CPU.,

The 6802 operates internally with an 8 bit data word and uses an 8
bit data bus so it is generally classed as an 8 bit processor. The eight
data bus lines DBO to DB7 are bi-directional and the direction of flow
across the data bus is governed by the R/W control signal which is
output by the CPU. This R/W signal is at 1 for a read operation where
data flows into the CPU and at 0 for a write operation where data flows
to the memory or output channel. This R/'W output from the CPU is
normally at the 1 state but for operations which require the CPU to
write data onto the data bus the R/W line goes to 0 during the phase 2
clock cycle before the data transfer occurs.

The 6802 and 6809 both use a fully synchronous bus system with its
timing based on a simple two phase CPU clock and its operation is
relatively easy to understand. The two phases of the clock signal are in

8 Practical Microprocessor Interfacing

Ves — 40 jag— HALT
NMI —{2 39— XTAL
TR —»3 38— EXTAL
FIRG —»{4 37 j—— RESET
BS -—5 36 f¢—— MR

BA -«—6 35— Q

Vee -——q 7 34— E_—__
A0 -—8 33 l¢—— BREQG
Al -9 32— RIW
A2 10 6809 31 j—p DO

A3 -1 30 jt—» D1

AL -+— 12 29 lag—p D2

AS - 13 28 lag— D3

AB -— 4 27 tg—p D4

A7 {15 26 fg—» DS

A8 - 16 25 fag—p D6

AS - 17 26 lg—p D7

A0 -—{18 23t—m A15
A11 -— 19 22— AL
A12 -«—120 21— A13

Fig. 1.5 Pin connections and signals for a 6809 CPU.

oo}

b2

Fig. 1.6 The two phase clock of the 6802 processor.

antiphase and timed so that they do not overlap as shown in Figure 1.6.
Phase 1 (¢1) is used for operations within the CPU itself and is not
normally required by the external devices in the system. All data
transfers to or from the CPU via the data bus are made during the
period when the phase 2 (¢2) clock is at the 1 level. The $2 clock is
therefore used to time data transfers to or from the memory or the
input-output ports. The standard version of the 6802 runs at a clock
rate of 1 MHz so each clock takes 1 microsecond. Since most instruc-
tions require some 2 to 4 clock cycles the program execution speed is
around 300000 to 400 000 instructions per second. Faster versions such

CPUs and Bus Systems 9

as the 68A02 and 68B02 will run at clock rates of 1.5 MHz and 2 MHz
respectively. The 6809 CPUs run at the same speed and there are also
A and B versions of the 6809 for higher speed operation.

The sequence of events as each program instruction is executed
consists of a number of machine cycles. Typical instructions will take
from 2 to 5 of these cycles for execution. The first cycle of any
instruction is always an opcode fetch which reads in the opcode data
from memory and the last cycle is where the operation specified by the
instruction takes place. Some instructions such as INY (Increment Y
register) only require the opcode so execution takes place during the
machine cycle following the opcode fetch. Other instructions require
an operand, such as an address, and will include one or two extra
machine cycles during which the operand data is read in from memory
before the final cycle of the instruction when execution takes place. In
the 6800 series processors each machine cycle takes up one clock cycle
of the CPU clock. Figure 1.7 shows the sequence for an instruction
which stores the contents of the accumulator in memory.

o L L
CLOCK ‘

| | | | |

CYCLE1 CYCLE2,CYCLE3 CYCLEL

READ READ READ WRITE

FETCH LOAD LOAD 'TRANSFER

OPCODE MSBYTE LSBYTE DATA FROM
OF OF ACCUMULATOR

ADDRESS ADDRESS TO MEMORY

Fig. 1.7 Machine cycle and clock timing for a 6802 instruction execution sequence.

The address bus is 16 bits wide and is output on line A0 to AlS
allowing 65 536 possible memory locations to be addressed. This bus is
driven from one of the registers in the CPU and for proper operation
the signals on the address lines must be stable and represent a valid
address before data is transferred across the data bus. To achieve this
the CPU outputs a VMA (Valid Memory Address) signal when a
correct address is present on the address bus. This VMA signal is
normally at O but goes to 1 when the address is set up ready for a data
transfer. Both VMA and R/W signals are set up before the start of ¢2
of the clock cycle.

The drivers within the CPU for writing to the data bus are normally
only enabled during an instruction that calls for data to be written to
the bus and at other times the drivers are disabled. Sometimes it may
be desirable that these drivers should be disabled to allow another
device to drive the bus and this can be done by setting the Data Bus

10 Practical Microprocessor Interfacing

Enable (DBE) input line to the CPU to the O state. In most systems
this DBE line is simply tied to the ¢2 clock so that the drivers are
enabled only when a write operation might be expected to take place.

For applications such as DMA (Direct Memory Access) or multi-
processor operation it is desirable that the CPU should be able to
release the address and data buses to allow another device to take
control of them. This can be achieved on the 6800 series processors by
applying a 1 input to the TSC (Tri-State Control) input which effec-
tively disables the W/R control and address output lines. The data bus
can be disabled by setting the DBE line low at the same time. When
the bus is released an output signal BA (Bus Available) goes high and
may be used to signal the external device that it may take control of the
bus system. The operation of the CPU can be stopped by setting the
HALT input at 0 which will also place the data and address buses in
the tri-state condition.

The IRQ and NMI lines, and FIRQ on the 6809, are interrupt inputs
which enable actions within the CPU to be triggered by external
hardware signals. We shall be looking in more detail at the operation
of these interrupt signals in a later chapter. The RESET input is also a
form of interrupt signal which is used to reset all of the internal circuits
of the CPU and start the program executing. The RESET line is set at 0
for a short period after power has been applied to the system and
resets the internal circuits of the CPU. After this reset sequence the
RESET input should be set at 1 for normal operation of the CPU.

Rockwell 6500 series CPU bus

The Rockwell 6500 series of CPUs, originally developed by MOS
Technology, are 8 bit processors which use a similar design philosophy
to that of the Motorola 6800 series. The internal architecture is slightly
different and the instruction set although simpler provides one or two
more versatile operations. Although there are a number of different
CPUs in this series the most widely used is the 6502 which is fitted in
many of the popular personal microcomputer systems such as the
Apple series, The pin layout and signals for the 6502 are shown in
Figure 1.8.

It should be noted that unlike the 6800 series, this CPU does not
produce a VMA (Valid Memory Address) signal on its control bus.
Address data will normally be valid from about 110 microseconds after
the low to high transition of the ¢1 clock until the end of the ¢2 clock
period. An extra signal that is provided is the SYNC signal which is set
at 1 when an instruction fetch operation is being carried out. The
READY input on the 6502 performs much the same function as
HALT on the 6800 and is used to temporarily halt the CPU operation.

