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Preface

No time in human history has ever witnessed such explosive influence and impact
of image processing on modern society, sciences, and technologies. From nanotechnolo-
gies, astronomy, medicine, vision psychology, remote sensoring, security screening, and
the entertainment industry to the digital communication technologies, images have helped
mankind to see objects in various environments and scales, to sense and communicate
distinct spatial or temporal patterns of the physical world, as well as to make optimal de-
cisions and take right actions. Image processing and understanding are therefore turning
into a critical component in contemporary sciences and technologies with many important
applications.

As a branch of signal processing, image processing has traditionally been built upon
the machinery of Fourier and spectral analysis. In the past few decades, there have emerged
numerous novel competing methods and tools for successful image processing. They in-
clude, for example, stochastic approaches based upon Gibbs/Markov random fields and
Bayesian inference theory, variational methods incorporating various geometric regulari-
ties, linear or nonlinear partial differential equations, as well as applied harmonic analysis
centered around wavelets.

These diversified approaches are apparently distinct but in fact intrinsically connected.
Each method excels from certain interesting angles or levels of approximations but is also
inevitably subject to its limitations and applicabilities. On the other hand, at some deeper
levels, they share common grounds and roots, from which more efficient hybrid tools or
methods can be developed. This highlights the necessity of integrating this diversity of
approaches.

The present book takes a concerted step towards this integration goal by synergistically
covering all the aforementioned modern image processing approaches. We strive to reveal
the few key common threads connecting all these major methodologies in contemporary
image processing and analysis, as well as to highlight some emergent integration efforts
that have been proven very successful and enlightening. However, we emphasize that we
have made no attempt to be comprehensive in covering each subarea. In addition to the
efforts of organizing the vast contemporary literature into a coherent logical structure, the
present book also provides some in-depth analysis for those relatively newer areas. Since
very few books have attempted this integrative approach, we hope ours will fill a need in
the field.

Let « denote an observed image function, and 7' an image processor, which can be
either deterministic or stochastic, as well as linear or nonlinear. Then a typical image
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processing problem can be expressed by the flow chart
(input) u — (processor) T —> (output) F = T[u],

where F represents important image or visual features of interest. In the present book, we
explore all three key aspects of image processing and analysis.

® Modeling: What are the suitable mathematical models for 4 and T? What are the
fundamental principles governing the constructions of such models? What are the
key features that have to be properly respected and incorporated?

® Model Analysis: Are the two models for 4 and T compatible? Is T stable and robust to
noises or general perturbations? Does F = T'[u] exist, and if so, is it unique? What
are the fine properties or structures of the solutions? In many applications, image
processors are often formulated as inverse problem solvers, and as a result, issues like
stability, existence, and uniqueness become very important.

¢ Computation and Simulation: How can the models be efficiently computed or sim-
ulated? Which numerical regularization techniques should be introduced to ensure
stability and convergence? And how should the targeted entities be properly repre-
sented?

This view governs the structure and organization of the entire book. The first chapter
briefly summarizes the emerging novel field of imaging science, as well as outlines the
main tasks and topics of the book. In the next two chapters, we introduce and analyze
several universal modern ways for image modeling and representation (for 1), which include
wavelets, random fields, level sets, etc. Based on this foundation, we then in the subsequent
four chapters develop and analyze four specific and significant processing models (for T')
including image denoising, image deblurring, inpainting or image interpolation, and image
segmentation. Embedded within various image processing models are their computational
algorithms, numerical examples, or typical applications.

As the whole spectra of image processing spread so vastly, in this book we can only
focus on several most representative problems which emerge frequently from applications.
In terms of computer vision and artificial intelligence, these are often loosely categorized
as low-level vision problems. We do not intend to cover high-level vision problems which
often involve pattern learning, identification, and representation.

We are enormously grateful to Linda Thiel, Alexa Epstein, Kathleen LeBlanc, Michelle
Montgomery, David Riegelhaupt, and Sara Murphy of the SIAM Publisher for their constant
encouragement and care throughout the project. It has been such a wonderful experience
of planning, communication, and envisaging.

We also owe profound gratitude to the following colleagues whose published works
and personal discussions have greatly influenced and shaped the contents and structures
of the current book (in alphabetical order): Antonin Chambolle, Ron Coifman, Ingrid
Daubechies, Rachid Deriché, Ron DeVore, David Donoho, Stu Geman, Brad Lucier, Ji-
tendra Malik, Y ves Meyer, Jean-Michel Morel, David Mumford, Stan Osher, Pietro Perona,
Guillermo Sapiro, Jayant Shah, James Sethian, Harry Shum, Steve Smale, Gilbert Strang,
Curt Vogel, Yingnian Wu, Alan Yuille, and Song-Chun Zhu, and the list further expands.

The book would be impossible without the generous support and help of many friends:
Doug Arnold, Andrea Bertozzi, Carme Calderon, Charles Chui, Babette Dalton, Bjorn
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Enquist, Bob Gulliver, Xiaoming Huo, Kate Houser, Yoon-Mo Jung, Dan Kersten, Paul
Schrater, Mitch Luskin, Riccardo March, Willard Miller, Peter Olver, Hans Othmer, Fadil
Santosa, Zuowei Shen, Chi-Wang Shu, Luminita Vese, Kevin Vixie, Tony Yezzi, Hong-Kai
Zhao, and Ding-Xuan Zhou.

Tony Chan would like to personally thank his colleagues for numerous inspira-
tions and interesting discussions: Emmanue] Candes, Raymond Chan, Li-Tien Cheng,
Ron Fedkiw, Mark Green, Michael Ng, Stefano Soatto, Xue-Cheng Tai, Richard Tsai, and
Wing Wong. Tony Chan is also deeply grateful to the following students and postdoc-
toral fellows for the privilege of working with them in this new and exciting field: Pe-
ter Blomgren, Jamylle Carter, Selim Esedoglu, Sung-Ha Kang, Mark Moelich, Pep Mulet,
Fred Park, Berta Sandberg, Jackie Shen, Bing Song, David Strong, Justin Wan, Yalin Wang,
Luminita Vese, Chiu-Kwong Wong, Andy Yip, Hao-Min Zhou, and Wei Zhu,

Jackie Shen wishes to personally thank Professors Gilbert Strang, Tony Chan, Stan
Osher, David Mumford, and Stu Geman for their profound influence on his scholastic growth
in the field, as well as numerous personal friends for warming and shining up each ordinary
day during the project: Tianxi Cai, Shanhui Fan, Chuan He, Huigiang Jiang, Ming Li,
Tian-Jun Li, William Li, Chun Liu, Hailiang Liu, Huazhang (Andy) Luo, Conan Leung,
Mila Nikolova, Jiaping Wang, Chao Xu, Jianling Yuan, Wen Zhang, and Qiang Zhu.

We are very grateful to Jean-Michel Morel and Kevin Vixie specifically for their
insightful and constructive comments on an early version of the manuscript for this book,
which have significantly improved the quality.

During this book project, the authors are enormously grateful for the support from
the National Science Foundations (NSF-USA), the Office of Naval Research (ONR-USA),
as well as the National Institute of Health (NIH-USA). In particular, Tony Chan would like
to thank Wen Master (at ONR) for the continuous support to this novel area in applied and
computational mathematics.

We also acknowledge the tremendous benefits from the participation of numerous
imaging sciences related workshops at the Institute of Pure and Applied Mathematics (IPAM)
at UCLA, the Institute of Mathematics and Its Applications (IMA) at the University of
Minnesota, the Institute of Mathematical Sciences (IMS) at the National University of
Singapore, the Mathematical Sciences Research Institute (MSRI) at Berkeley, as well as the
Center of Mathematical Sciences (CMS) at Zhejiang University, China.

Finally, this book project, like all the others in our life, is an intellectual product under
numerous constraints, including our busy working schedules and many other scholastic
duties. Its contents and structures as presented herein are therefore only optimal subject to
such inevitable conditions. All errata and suggestions for improvements will be received
gratefully by the authors.

This book is absolutely impossible without the pioneering works of numerous insight-
ful mathematicians and computer scientists and engineers. It would be our great pleasure
to see that the book can faithfully reflect many major aspects of contemporary image anal-
ysis and processing. But unintentional biases are inevitable due to the limited views and
experiences of the authors, and we are happy to hear any criticisms from our dear readers.
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